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SEQUENCE SPECIFICITY OF TENIPOSIDE-INDUCED DELETION AND 
INSERTION MUTATIONS AT THE APRT LOCUS OF CHINESE HAMSTER CELLS 

ABSTRACT 

A d issertat ion submitted in part ial ful f i l lment of the 
requirements for the degree of Doctor of  Phi l osophy at the 
Medical College of Virginia , Virginia Commonwea lth University . 

Y i -Hong Han 

Medical College of  Virginia--Virginia Commonwea lth University , 
199 2. 

Advisor : Dr . Lawrence F .  Povirk 

Previous studies suggested that teniposide is a strong 

c lastogen , and that the DNA breakage effect of this drug is 

mediated by the nuc lear enzyme topoisomerase I I . Ripl ey et a l  

found evidence for a correspondence between sites of  acridine-

induced frameshift mutat ions in bacter iophage T4 and sites o f  

in vitro DNA cleavage b y  T4 topoisomerase I I . T o  ident i fy the 

sequence spec ificity of teniposide- induced de letion and 

insert ion mutations in mamma l ian c e l ls , the CHO-D4 2 2  c e l l  

l ine , which i s  hemizygous a t  the aprt locus , was empl oyed in 

this study . S ixty-eight teniposide- induced and 42 spontaneous 

aprt mutants were analyz ed at the DNA sequence leve l . Compared 

with the spectrum of spontaneous mutations in which two thirds 

of the mutations are base subst itut ions , two thirds of 

teniposide- induced mutations are deletions and insertions of 

different s i z es .  Significant site correspondence between 

teniposide- induced deletion/ insert ion mutations and in vitro 
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x i  

DNA double strand cleavages b y  pur i f ied mamma l ian 

topoisomerase I I  was a lso found in this study , which suggests 

that the maj ority of teniposide- induced de letions and 

insertions observed in this study were generated at the sites 

of topoisomerase I I  mediated DNA double strand breaks in the 

cel ls . However , considering the positions of the double 

cleavage sites in the mutation sequences , no consistent 

pattern was found which could suggest a unif ied mechanism of 

DNA double strand break repair . Three models are proposed to 

try to explain the possible events occurr ing in the ce l ls 

f o l lowing teniposide exposure which resulted in observed 

deletion and insertion mutat ions . 
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INTRODUCTION 

Teniposide ( 4 ' -dimethyl-epipodophyl l otoxin-thenyl idene 

beta-D-glucopyranoside ; VM-2 6 ,  Figure 1) is a semisynthetic 

epipodophy l l otoxin derivative which actively used in c l inical 

cancer chemotherapy since early 1 9 7 0 ' s .  

Previous studies showed that ten iposide produced a 

cytotoxic effect in mamma l ian cells ma inly by causing 

extensive DNA single and double strand breaks ( Loike et a l . , 

1 9 7 4 ) , and the DNA fragmentation ef fect of teniposide was 

mediated by topoisomerase I I , an essent ial nucl ear enzyme 

which functions to reso lve DNA topo logical problems dur ing 

certa in genetic activities such as repl ication and 

transcr iption ( Long and Minocha , 1 9 8 3 ) . Teniposide is able to 

inhibit the enzyme ' s  transient DNA breakage resea l ing 

activity , and this is presumably the ma in mechanism of  action 

of the drug. 

Therapy-related acute mye loid leukemias have been known 

to occur among long term cancer survivors who were treated 

with radiation and / or certa in anticancer drugs such as 

a lkylating agents . A unique type of acute monocyt ic l eukemia 

has been ident i f ied in recent years and attr ibuted to the use 

of epipodophyl l otoxins and other topo isomerase II inhibitors 

1 
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OH 

Podophyllotoxin Etoposide Teniposide 

Fugure 1. Structural formulas of podophyllotoxin, etoposide and teniposide. 

tv 
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including acridines and anthracyc l ines , etc . ( Rata in et a l . ,  

1 9 8 7 ) . The demand for effective ant icancer drugs with greater 

therapeut ic indexes urges us to provide detai led knowl edge 

about the mutagenic propert ies of drugs l ike teniposide in 

order to direct future efforts in drug deve lopment . 

Teniposide was found to be strongly mutagenic in 

mamma lian cel ls as indicated by a sign i f i cant increase in the 

mutat ion frequenc ies at the hypoxanthine-guanine 

phosphoribosyl transferase (hgprt ) and the thymidine k inase 

( tk )  loci fol lowing teniposide treatment ( S ingh and Gupta 

1 9 8 3 ; DeMar ini et a l . , 19 8 7 ) . s ister chromatid exchanges were 

a lso induced by teniposide 

ce l ls . However , the drug 

in Chinese hamster ovary ( CHO ) 

fai led to exhibit sign i f icant 

mutagenic effect on a number of prokaryot ic mutagenesis 

systems ( Gupta , et aI , 1 9 8 7 ) . These results suggest that 

teniposide is a strong clastogen and that the DNA breakage 

e f f ect of the drug is probably due to the inhibit ion of 

mamma l ian topoisomerase I I . 

Due to the lack of good mode l systems , only a few studies 

were focused on looking for the DNA sequence spec i f i c ity of 

mutations induced by topoisomerase II inhibitors , and none of 

the work was done in mamma l ian cel ls . Ripley et al ( 1 9 8 8 )  

reported that hotspot sites for acridine- induced frameshift 

mutations in bacteriophage T4 correspond exactly to the in 

vitro c leavage sites of the T4 topo isomerase I I . These results 

not only suggested that inhibit ion of T4 topo isomerase I I  by 

acridine was responsible for the generat ion of the observed 
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mutations , but a lso showed that the in vivo topo isomerase I I  

mediated DNA cleavages could b e  reproduced in vitro with the 

same sequence speci f i c ity . It would be especi a l ly sensible to 

f ind out whether such co-speci f i c ity is a lso present in 

mamma l ian cel ls . 

The present study is a imed to reveal the DNA sequence 

speci f ic ity of  teniposide- induced mutations in mamma l ian 

c e l ls . A special CRO ce l l  l ine D4 2 2 , which is hem i zygous at 

the aprt gene , was employed in this study . The aprt gene 

encodes the nonessential enzyme aden ine phosphoribosyl 

transferase , the product of which , adenosine-5 ' -monophosphate 

(AMP) is used in DNA synthesis . Cel ls that carry mutationa l ly 

inacti vated aprt genes could be selected by 8 -az aadenine , 

which is a toxic ana log of aden ine . Because of the hem i zygous 

nature and the sma l l  s i z e  ( 2 . 6  kb ) of the locus , the aprt 

mutants could be analyz ed at the DNA sequence leve l . possible 

co-specificity between teniposide- induced mutations and the in 

vitro topoisomerase I I  cleavage sites could provide c lues for 

ident i f ication of possible mechanisms of teniposide 

mutagenesis as wel l  as the mechanisms of DNA doubl e  strand 

break repa ir . 
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LITERATURE REVI EW 

HISTORY 

Podophyl l um emodi Wa l l . ,  which grows in the H imalayan 

region , and the American Podophyl lum pel tatum L. ( may app l e , 

mandrake ) are old medicinal plants . They belong to the fam i ly 

o f  the Berberidaceae and were used by the natives o f  both 

continents as cathart ics and anthe lminthics dur ing the last 

two centuries . After Kap lan discovered the therapeut ic e f f ect 

of podophy l l in , an alcoho l ic extract of the Podophyl l um 

rhi z omes , in the treatment of condylomata acuminata in the 

1 9 4 0 s  ( Kaplan , 1 9 4 2 ) , King and Sull ivan ( 1 9 4 6 ) , Sul l ivan and 

Wechs ler ( 19 4 7 )  and others descr ibed arrest in metaphase 

produced by this plant extract . In the meantime , successes 

with condyloma therapy inspired intens ive work with mal ignant 

tumors in several separate laborator ies and podophyl l in was 

shown to exhibit a s ignificant cytotoxic effect ( Cornman and 

cornman , 1 9 5 1 ) . The chemical analys is of  podophy l l in revealed 

several compounds of which Podophy l l otoxin is the main 

cytotoxic const ituent . A l l  these substances belong to the 

class of l ignans , natural products conta ining the 2 , 3 -

d ibenzylbutane skeleton . Although possess ing antitumor 

5 



www.manaraa.com

6 

propert ies they were unacceptable for human use because 

toxicity prevented the ir administration in high enough dosage 

to g ive sign i f icant cl inical activity ( Issel l  and Crooke , 

1 9 7 9 ) . 

In the early 1 9 5 0s ,  chemists in the pharmaceutical 

research department of Sando z , Ltd . in Switzerland reasoned 

that Podophyl lum l ignans might be present in the p l ant as 

glycosides . It was hoped that , in analogy to cardiac 

g lycosides , they would exhibit pharmacological properties 

superior to those of the aglycones . After systematic chemical 

mod i f i cation of the podophy l l otoxin molecule and test ing in 

biological systems , two preparat ions , name ly SP-G ,  the 

condensation product of the Podophyl lum glucoside fraction 

with benza ldehyde , and SP-I ,  podoph i l l inic acid ethyl 

hydra z ide were demonstrated to be therapeutically useful and 

were commercia l i z ed in 1 9 6 3 . After two years of more combined 

chemical and biological search for st i l l  better ant i tumor 

agents , a compound , namely DEPBG ( D ,  4 ' -demethyl- ; E ,  epi - ; P ,  

podophyl lotoxin ; B ,  benzyl idene ; G ,  B-D-glucoside ) was found 

in SP-G which was a potent inhibitor of cell proliferation. To 

their surpr ise , DEPBG exhibited a d i f f erent mode of action 

compared with that of previous Podophyl l um compounds : instead 

o f  producing an arrest of mitosis in metaphase , it prevented 

pro l i ferat ing c e l ls from enter ing mitosis and thus induced a 

premitot ic block ( Stahel in and Cerletti , 1 9 6 4 ) . Subsequently , 

a large number of other a ldehydes were condensed to this 

g lucoside ( Kuhn et a l . , 1 9 6 9 ; Kuhn and Wartburg , 1 9 6 9 ) and the 
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products were analyz ed for the ir bio logical effects . Two of  

them , the condensation products with thiophene a ldehyde 

( tenipos ide , VM-2 6 ,  Vumon ) and aceta ldehyde ( etopos ide , VP- 1 6 , 

VePesid)  were selected for cl inical testing based on their 

high cytostat ic potency in mouse leukemia L12 10  and a number 

of anima l tumor mode ls ( Stahe lin 1 9 6 9 ; 1 9 7 0 ) . 

C l inical tr ials of teniposide and etopos ide started in 

1 9 6 7  and 1 9 7 1 ,  respective ly , and promis ing therapeutic 

activities in different types of cancer have been found . I n  

1 9 7 8 , tenipos ide and etoposide were l icensed out t o  the united 

states company Bristol-Myers , which carr ied on the deve lopment 

of the two epipodophyl lotoxins and introduced etopos ide to the 

u . s .  market in 19 8 3 . 

The mechanisms of action of epipodophyllotoxins was 

understood only at the cel lular leve l unt i l  Loike et a l . 

reported fragmentation of DNA in Hela c e l l s  by tenipos ide and 

etopos ide in 1 9 7 4 . Another breakthrough was made several years 

later by Long and Minocha ( 1 9 8 3 ) who correlated the DNA 

fragmentation with the inhibit ion of the nuclear enzyme 

topoisomerase II and proposed that inhibition of topo isomerase 

I I  by tenipos ide and etoposide is responsible for in vivo DNA 

breakage and cytotox ic ity . These important f indings opened a 

new chapter of epipodophy l l otoxin history . 

CURRENT ROLE IN CANCER CHEMOTHERAPY 

s ince the f irst introduct ion of teniposide in 1 9 6 7  and 
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etopos ide in 1 9 7 1 ,  these drugs have been increasingly used in 

cancer chemotherapy . Teniposide and etoposide share the same 

mode of  action --- they are phase-speci f ic cytotoxic drugs 

acting in the late S and early G2 phase and inducing a 

premitotic block in the cell  cyc l e  ( Krishan et a l . ,  1 9 7 5 ; 

Ka lwinsky et a l . ,  1 9 8 3 ) . This mode of action is quite 

d i f f erent from that of the ir parent compound podophyl l otoxin 

which is a spindle poi son caus ing inhibition of mitos i s  by 

blocking microtubular assembly (Kelleher , 1 9 7 7 ; Loike and 

Horwitz ,  1 9 7 6 a ) . Teniposide and etoposide also have very 

s imi lar experimental and c l inical features ( Roz encweig et a l . , 

1 9 7 7 ) , except that teniposide is about seven to ten t imes more 

potent than etopos ide as regards production of DNA damage and 

cytotoxicity ( Ross et a l . , 1 9 8 4 ) , and etopos ide appears to 

have a greater therapeut ic index ( Clark and S levin , 1 9 8 7 ) . 

Etoposide and teniposide had been extens ive ly stud ied in 

c l inical tr ials sponsored by the Nat ional Cancer Inst itute and 

demonstrated to be act ive ant ineoplastic agents . They not only 

have a wide range of anticancer acti vi ty , but also are 

relat ive ly we l l  tolerated ( O ' Dwyer et a l . , 1 9 8 4 ; 1 9 8 5 ) . They 

are used in treatment of several ma l ignancies either a l one or 

in combination with other cancer chemotherapeutic agents . The 

activity of etoposide aga inst different types of cancers has 

been more extensively exp lored and it is frequent ly used as a 

f irst- l ine drug in the treatment of sma l l  c e l l  lung cancer , 

germ ce l l  tumors ,  lymphomas ,  acute non- lymphocyt ic l eukemia 

and more recent ly Kaposi ' s  sarcoma associated with acqu ired 
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immune def iciency syndrome ( Arnold , 19 7 9 ; I s s e l l  and Crooke , 

1 9 7 9 ; O ' Dwyer et a l . , 1 9 8 5 ; Sinkule , 1 9 8 4 ; ) . Tenipos ide has 

tended to be used in pediatric oncology , espec i a l ly for 

neuroblastoma ( Hayes et a l . , 1 9 8 5 ; O ' Dwyer et a l . ,  1 9 8 4 ) , but 

is a l so active in acute lymphocytic leukemia , lymphomas ,  bra in 

tumors and sma l l  cell  lung cancer ( O ' Dwyer et a l . ,  1 9 8 4 ) . 

Nei ther teniposide nor etopos ide has appreciable acti vi ty 

in breast , colorecta l ,  or head and neck carcinomas and 

melanomas ( S inkule , 1 9 8 4 ; Radice et a l . , 1 9 7 9 ) . 

CHEMISTRY 

The registered name of the formulation of tenipos ide (VM-

2 6 ,  PTG , and NSC12 2 8 1 9 ) in cl inical use is Vumon ( Br i stol 

Myers ) , and its chemica l name i s  4 ' -demethyl 

epipodophyllotoxin-9 ( 4 , 6 -0-thenyl idene-6 -D-glucopyranos id e ) . 

The empirical formula of tenipos ide is C32H32013S ,  and the 

molecular we ight is 6 5 6 . 7 .  

Tenipos ide and etopos ide were synthes i z ed starting from 

podophyllotoxin ( F ig .  1 )  which is a component of the ethano l ic 

extracts ( podophy l l i n )  of dried roots and rhi z omes of species 

o f  the genus Podophyl l um . The commonly used sources of 

podophy l l i n  are the Podophyl l um pel ta tum L. (May app le or 

American Mandrake ) and the Indian species Podophyl l um emodi 

Wa l l ich ( Ho lthuis , 1 9 8 8 ) . 

Both teniposide and etopos ide have a multiringed 

structure of the parent podophyl lotoxin l inked to a sugar 
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moiety , a glucopyranos ide ( Figure 1 ) . They d i f fer from 

podophy l l otoxin at 3 positions : they have a glucos ide moiety 

at the C-4 atom , their C-4 position is in the enanti omeri c  

configurat ion of podophyl lotoxin , and they have a hydroxy 

group at the C-4 '  position . Etopos ide and tenipos ide only 

d i f fer in sUbst itution on the glucoside mo iety of  a methyl 

group ( etopos ide ) for a thenyl idene group ( tenipos ide ) . 

Studies on the structure-activity relationship suggested 

that the hydroxy group at the C-4 ' position was essent i a l  for 

the DNA breakage activity ; ep imer i z ation of the C-4 posit ion 

of  the podophyl lotoxin rings enhanced activity , whereas 

glucosylation of the hydroxy group at the 4 -position 

diminished activity ( Loike and Horwitz ,  1 9 7 G b ;  Long et a l . , 

1 9 8 4 ) . Alteration or opening of the lactone mo iety resulted in 

a partial or comp lete inact ivat ion of etopos ide , respectively 

( Jardine et a l . , 1 9 8 2 ) ; The presence of  the glucos ide group 

greatly increased the abi l ity of etopos ide and tenipos ide to 

produce DNA breaks ( Ayres and Lim ,  1 9 8 2 ; Loike and Horwitz , 

1 9 7 Gb )  . 

Teniposide is a lmost insoluble in water , and is so luble 

i n  organic so lvents , such as a lcohols , halogenated 

hydrocarbons , tetrahydrofurane and dimethyl sul foxide 

( Holthuis , 1 9 8 8 ) . Because of the l imited solub i l ity and 

stabi l ity of etopos ide and tenipos ide in aqueous so lutions , a 

complex formulation is required for intravenous use of these 

drugs . Tenipos ide i s  suppl ied in 5 ml vials conta ining 50 mg 

o f  drug , 0 . 1 5 g of benzyl alcoho l ; 0 . 3  g of N , N-dinethyl 
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acetamidine ; 2 . 5  g of polyethoxylated castor o i l ; ma l e i c  acid 

to Ph 5 . 1 , and abso lute alcohol to 5 ml . Etopos ide i s  suppl ied 

i n  vials containing 1 0 0  mg of drug , 4 0 0  mg of Tween 8 0 ,  3 . 2 5 

g o f  polyethylene glycol 3 0 0 , 1 5 0  mg of benzyl a lcoho l , 1 0  mg 

of anhydrous citric acid and absolute a lcohol to 5 ml 

( Ro z encweig et a l . , 1 977 ) . The intact ampoules of teniposide 

and etopos ide in such formula were found to be chemica l ly 

stable for 4 years . The drugs are much less stabl e  in 

phys io logical so lut ions such as 0 . 9 % NaCl or 5 %  dextrose 

( Clark and S levin , 1 9 8 7 ) . It was also found that the stab i l ity 

of  these drugs var ies with drug concentrat ion and pH of  the 

so lut ion , but not with temperature d i f ferences or whether they 

are stored in dark or l ight environment . Lowered stab i l ity was 

observed with increased drug concentrat ion ( Clark and S levin , 

1 9 87 ) . Etoposide is most stable at pH 5 ( t1 / 2=6 0 9 h ) ; at pH 

values less than 5 the sugar mo iety is cleaved , whereas in 

bas ic so lut ions , etopos ide ep imer ises yielding the c i s- lactone 

which degrades further to give the cis-hydroxy acid der ivat ive 

( Underberg et a l . , 1 9 8 5 ) . 

PHARMACOKINETICS 

The pharmacokinet ic propert ies of tenipos ide were f irst 

studi ed by Al len and Creaven in mid 1970s us ing trit ium 

l abeled teniposide . After a s ing le infus ion , tenipos ide showed 

a triexponenti a l  decay curve (Al len and Creaven , 1 975 ; Creaven 

and A l l en , 1975 ) . When reverse-phase high performance l iquid 
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chromatography w a s  deve loped t o  improve spec i f i c ity o f  the 

analys i s , most studies showed a biexponent ial decay f o l lowing 

intravenous infusion of tenipos ide ( D ' Inca lci et a l . , 1 9 8 5 ; 

Evans et a l . , 19 8 2 ; stewart et a l . , 1 9 8 4 ) . The e l imination 

ha l f- l i f e  of tenipos ide was 6 to 1 0  hours in those studies 

showing a biexponent ial decay and between 20  and greater than 

48 hours in those exhibiting triexponenti a l  decay . The vo lume 

of distr ibution at steady state was 8 to 3 0  L/m2 . Tota l plasma 

c learance was 7 to 17 ml/min/m2 and rena l clearance was 1 to 

3 ml /min/m2 ( Clark and S levin , 1 9 8 7 ) . B i l i ary excret ion 

accounted for 0 to 10% of the dose (Al len and Creaven , 1975 ; 

Creaven and Allen , 1975 ) . Steady-state plasma concentrations 

of  tenipos ide dur ing a 72 hour infusion were l inear ly related 

to dose ( Rodman et a l . , 1 9 8 5 ) . Several studies showed that 

only 5 to 2 0 %  of the admini stered dose was el iminated as 

unchanged drug , and the maj or metabo l i c  products appeared to 

be the hydroxy acid , the picro- Iactone isomer , and the 

aglycone glucuronide ( Evans et a l . ,  1 9 8 2 ; Ho lthuis et a l . ,  

1 9 8 6 ;  Ross i  et a l . , 1 9 8 4 ) . 

The pharmacokinet ics of etopos ide was reported to f o l low 

biexponential decay after intravenous administrat ion ( C l ark 

and S levin , 1 9 8 7 ) . The terminal e l imination half- l i f e  of 

etoposide was less than that of tenipos ide , and the plasma and 

renal c learances of etopos ide were greater . 

Uptake of etopos ide and teniposide into mouse l eukemia 

L12 1 0  cells exhibited a membrane-contro l led pass ive d i f fusion , 

and 2 0 % of the drug was irrevers ibly reta ined in the c e l l  
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( A l len 1978 a ; 1978 b ;  Al len and Shirley , 1977 ) . The uptake and 

binding of teniposide was 7 to 10 t imes that of etopos ide 

( A l l en ,  1978b) , which may partly exp l a in the dif ference in 

e f f i cacy of equitoxic doses of  the two drugs (Al len , 1 9 78 a ;  

Stahe l in ,  1970 ) . Tenipos ide was more h ighly protein bound than 

etopos ide . More than 9 4 %  of etopos ide and over 9 9 %  of 

teniposide was protein-bound in vitro over a wide range of 

drug concentrations (Al len et a l . , 1 9 8 2 ) . Such magnitude of 

protein binding is l ikely to inf luence their pharmacokinetics 

in vivo ( Ba i ley-Wood et al . ,  1 9 8 5 ; G i l ette , 1973 ) . 

TOXICITY 

Short-term toxic ef fects of tenipos ide were described in 

the phase I and phase I I  cl inical tria l s . At every schedule 

tested , the most pronounced toxicity has been 

myelosuppress ion . The severity and durat ion of 

myelosuppression increases with drug dose in a gradua l 

fashion . For example , at 67 mg/m2 weekly , the maj or ity of 

patients did not manifest white blood cells counts < 2 0 0 0 /mm3 

( Muggia et a l . ,  1971 ) , whi l e  at 1 6 5  mg/m2 twice weekly in 

pat i ents wi th leukemia , ap lasia of the marrow for 

approximately two weeks was seen ( Rivera et a l . ,  1 9 8 2 ) . The 

per iod of ap lasia was pro longed by increasing the dose further 

to 2 0 0  mg/m2 ( Rivera et a l . , 1 9 8 2 ) . However , the 

myelosuppress ion induced by teniposide appeared to be no more 

severe than that induced by most other ant i l eukemic drugs 
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( R ivera et a l . , 1975 ) . 

Other toxic effects have been cons iderably less frequent . 

The incidence of type I hypersens itivity varies from 2 %  to 1 1 %  

of  patients , and n o  such reaction induced by thi s  drug has 

been reported to be fata l (We i s s , 1 9 8 2 ) . Hypersens itivity 

reactions can occur within minutes of starting the infus ion , 

with rapid onset of symptoms such as f lushing , urticari a , 

wheez ing , coughing , and vomiting ( Hayes et a l . , 1 9 8 5 ) . Acute 

rises in blood pressure and , occas iona l ly ,  hypotens ion were 

a l s o  mani fested ( Hayes et a l . , 19 8 5 ;  Muggia et a l . , 1971 ) . A l l  

these reactions , except for hypotension , were usua l ly s e l f 

l imited and could b e  resolved with interrupt ion o f  the 

infus ion or by intravenous Benadryl and Solu-Cortef ( Hayes et 

a l . ,  1 9 8 5 ; O ' Dwyer et a l . , 1 9 8 4 ) . 

The acute reactions usua l ly occurred after repeated 

administration , but somet imes appeared on the f irst dose 

( Hayes et a l . ,  19 8 5 ) , suggest ing that thi s  drug reaction was 

probably not mediated by antibody (Weiss , 1 9 8 2 ) , although one 

pat ient was descr ibed with an IgG1 ant ibody to the drug 

( Habibi et al . , 1 9 8 2 ) . It has been suggested that the so lvent 

used for preparation of tenipos ide may be responsible for the 

a l l ergic reactions , s ince other drugs which use 

d imethylacetamide or Cremophor EL as so lvent have a l so been 

reported to induce a l lergic reactions ( Budman et a l . , 1 9 8 2 ; 

Dye and Watkins , 19 8 0 ;  Hutte l et a l . , 1 9 8 0 ) . Etopos ide dose 

not requ ire this so lvent for preparation and no acute 

anaphylactic reactions have been ascr ibed to this drug . 
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w i th r e g a r d  t o  l o n g - term comp l i c a t i on s , 

epipodophyllotoxins have been reported recent ly to be 

tumorigenic . Thi s  effect wi l l  be discussed in "therapy-related 

ma l ignancy" . 

MECHANI SMS OF ACTION 

Tenipos ide is one of the anticancer drugs which produce 

cytotoxic effects ma inly by affecting DNA topoisomerases . 

Topoisomerases are essential nuc lear enzymes that funct ion to 

resolve DNA topological problems wh ich arise dur ing some 

critical cel lular processes such as rep l i cation and 

transcription . Two maj or topoisomerases , types I and I I , have 

been ident i f ied over the past two decades in both prokaryotic 

and eukaryotic cel ls (Wang , 1 9 8 5 ; Ge l l ert , 19 8 1 ) . These 

enzymes funct ion by introducing transient protein-br idged DNA 

breaks to a l low the passage of other DNA strand ( s ) . 

Topoisomerase I breaks one strand , and topo isomerase I I  breaks 

both strands of dup lex DNA . with the strand pass ing activity , 

both enzymes can relax supercoi led DNA , and topoisomerase I I  

c a n  a lso catenate/ decatenate DNA circles . 

Eukaryotic DNA topoi somerase I I  is a 170 kd homodimer ic 

protein which i s  present in the nuclear matrix ( Earnshaw et 

a l . ,  1 9 8 5 ) . Thi s  enzyme appears to be the cel lular target of 

a number of c l inica l ly important ant icancer drugs from d iverse 

chemica l classes inc luding the interca lating agents 

( acridines , anthracyc l ines , e l l iptic ines , actinomyc ins ) and 
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epipodophyl lotoxins . These drugs interfere with the 

topo isomerase II by trapping a key cova lent intermediate of 

the breakage-re j o ining reaction , termed the " c l eavable 

complex" . Treatment of the cleavable comp lex with a strong 

protein denaturant such as SDS or a lka l i  results in DNA 

s i ngle-strand and double-strand breaks , where the 51 end of 

each broken DNA strand is  cova lently linked to a topo isomerase 

subunit via a tyrosyl phosphate bond . I n  the case of a double

strand break , the 3 1-hydroxyl end is recessed by four bases 

( four-base staggered double-strand break ) ( Tewey et a l . , 

1 9 8 4 a ) . However , in the absence of prote in denaturants , the 

c leavable complexes can be converted to nonc leavable compl exes 

upon remova l of the drug from the reaction ( Long et a l . , 

1 9 8 6 ) . It has been widely accepted that accumulation of the 

drug-stab i l i z ed DNA-topo isomerase II cleavable comp l exes is 

l etha l to pro l i f erat ing cells and is respons ible for the 

cytotoxic activity of these drugs . 

The bio logica l funct ions of eukaryot ic DNA topo isomerase 

I I  are sti l l  not we l l  character i z ed . Studies in the SV4 0 ce l l 

free replication system have shown that topoisomerase I I  is  

e ssential for segregat ing completely repl icated daughter 

molecules ( Yang et a l . , 1 9 87) . Its strand-passing activity is 

a l s o  important for rep l ication fork movement . The fact that 

the enzyme act ivity is dramat ica l ly increased when quiescent 

ce l l s  are st imulated for growth ( Bodley et a l . , 1 9 8 7 )  also 

indicates an important role for topo isomerase I I  in cell  

rep l ication . Unl ike DNA topo isomerase I ,  topoisomerase I I  is  
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uni formly distributed along the chromosomes ,  and i s  not 

enriched in actively transcr ibed regions ( Earnshaw et a 1 . ,  

1 9 8 5 ) . On the other hand , strong topo isomerase I I  c leavage 

s ites have been mapped to both 3 '  and 5 '  ends of the 

Drosophila heat-shock genes hsp70 ( Rowe et a l . ,  1 9 8 6 )  and the 

SV4 0 enhancer region in SV4 0- infected monkey cel l s  ( Yong et 

a l . , 19 8 5 )  which indicates that topoisomerase II may a l s o  be 

invo lved in the process of transcription . Other biological 

funct ions of eukaryotic topoisomerase II such as promotion of  

i l legitimate recombination in vitro ( Bae et al . , 1 9 8 8 ) and 

organi z ation of chromosome structure ( Earnshaw et a l . , 1 9 8 5 )  

have also been recogn i z ed .  

Like many other ant icancer drugs , tenipos ide and 

etopos ide were entered into cl inical tr i a l s  based on their 

apparent tumorostatic effects . The mechanism of act ion at the 

molecular leve l began to be uncovered a few years later when 

Loike et al . ( 1 974 ) found that treatment of c e l l s  with 

teniposide and etopos ide resulted in DNA fragmentat ion . The 

lack of an effect of these drugs on pur i f ied DNA led to the 

hypothes i s  that a nuc lear enzyme was respons ible for the drug

induced cel lular DNA degradat ion ( Lo ike and Horwitz ,  1 9 76 ) . 

Subsequent studies showed that topo i somerase I I  was the 

putati ve cel lular target of tenipos ide and etopos ide , and 

trapping of  c leavable complexes was the pr imary mechan i sm of 

action of  these drugs ( Long and Minocha , 1 9 8 3 ; Ross et a l . , 

1 9 8 4 )  . The potency of d i fferent congeners of 

epipodophyl lotoxins in stab i l i z ing c leavable comp lexes was 
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found to corre late we l l  with the ir cytotoxic ity ( Long , 1 9 8 4 ) . 

However , the mechanism by which the drug-stab i l i z ed c leavable 

comp l exes trigger ce l l  death is st i l l  not wel l  defined . 

Severa l possibi l ities have been cons idered , which may not 

be mutual ly exclus ive . F irst of a l l ,  col l i s ion of  drug

stab i l i z ed cleavable complexes with rep l i cation forks may be 

the initial event resulting in DNA s ingle- and double-strand 

breaks . It was found that double-strand-break-repa ir def i c i ent 

mutants were hypersens it ive to the cytotoxic effects of these 

drugs ( D ' Arpa and Liu , 19 8 9 ) . G2 arrest has been demonstrated 

to occur following drug treatment ( Drewinko and Bari og l e , 

1 9 76 ) . Ana lys is of chromosome damage in G2-arrested HeLa c e l l s  

indicated a direct correlation between the amount of  heavily 

damaged chromat in and the presence of cells  arrested in G2 

( Rao , 1 9 8 0 ) . G2 arrest apparent ly provides t ime for repa ir of 

DNA damage prior to mitos i s . However , when the level o f  DNA 

damage exceeds the repair capacity of the cel l ,  certain 

cel lular mechanisms , analogous to the SOS response in E .  col i, 

may be triggered which lead to cell death . Moreover , some c e l l  

death may b e  attr ibuted t o  the dep let ion of  functional enzyme 

due to the trapp ing of the topoi somerase II in c leavabl e  

comp l exes b y  the drug . Topo isomerase I I  appears to be 

absolutely required in some cel lular processes such as 

chromosome condensation and separat ion dur ing mitos i s  ( Uemura 

et a l . , 1 9 87 ) . Absence of topoi somerase II activity dur ing 

these critical periods of the ce l l  cyc le might lead to cell  

death . As evidence for th is hypothes i s , exposure of  a G2 
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population of CHO ce l l s  to teniposide results in the 

product ion of a sma l l  number of ce l l s  having incomp l etely 

condensed or fused mitot ic chromosomes in the form of  

micronuclei ( D ' Arpa and Liu , 1 9 8 9 ) . 

Fina l ly ,  the cel lular level of topoisomerase I I  is one of  

the important factors in determining drug cytotoxic ity . Both 

tumor cells and pro l i f erating norma l c e l l s  have higher l eve l s  

o f  topo isomerase I I . B y  us ing a number of norma l and 

neoplastic ce l l s , Hs iang et a l . ( 1 9 8 8 )  demonstrated that the 

l evel of DNA topoisomerase II was regu lated by both serum 

growth factors and the cell  dens ity in norma l ce l l s . At lower 

serum concentrat ions and higher cell  dens ities , the cel lular 

l eve l of topoisomerase I I  was reduced in these cel l s . Serum 

rep l enishment rapidly restored the high cel lular l evel of  

topo isomerase I I . However , these culture conditions had much 

less effect on topo isomerase II leve ls in tumor c e l l s . 

Furthermore ,  wh i l e  the cellular leve l of topo isomerase I I  was 

control led in norma l ce l l s  dur ing the GO/ G1 phase ,  the leve l of 

topoisomerase I I  in tumor cells  rema ined relatively constant 

throughout the ce l l  cycle . The high leve l of topo isomerase I I  

in pro l i ferating tumor cells and its a ltered regulation may 

partly explain the spec i f i c ity of topo isomerase II inhibitors 

toward neoplastic tissues . 

THERAPY-RELATED MALIGNANCY 

Therapy-related acute mye loid leukemia ( t-AML) is  a late 
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comp l ication o f  extens ive cytotoxic chemotherapy and / or 

radiotherapy for a wide range of pr imary disorders . It  

represents 1 0 %  to 1 5 %  of  a l l  AML , and is  usua l ly 

unclassif iable by the French-Amer ican-Br itish ( FAB ) system . 

The characteristics that distinguish t-AML from de novo AML 

include a high inc idence of antecedent myelodysp lastic 

syndrome with c l inical manifestations of pancytopenia , 

frequent cytogenetic abnorma l ities invo lving chromosomes 5 and 

7, and poor prognosis due to low respons iveness to 

ant i l eukemic therapy ( Fourth International Workshop , 1 9 8 4 ; 

Kantarj ian and Keating , 1 9 87) . The med ian time from initial 

treatment to bone marrow dys funct ion i s  4 -6 years . The 

deve lopment of this unique disorder has been attr ibuted to the 

use of a lkylat ing agents ( e . g .  L-phenyla lanine mustard , 

chlorambuci l  or melpha lan)  and / or radiotherapy in the 

treatment of the pr imary ma l ignanc ies ( Alba in et a l . , 1 9 9 0 ;  Le 

Beau et al . ,  19 8 6 ; Lerner , 1978 ) . 

In recent years , several cases of t-AML have been 

reported in which ne ither the morphology nor the karyotype was 

typical for the commonly seen t-AML ( Rata in et a l . , 1 9 8 7 ; Pui 

et a l . ,  19 8 9 ) . Patients with th is new type of t-AML had 

s evera l character istics in common : epipodophyl lotoxins , 

anthracycl ines or actinomyc in D were inc luded in the 

chemotherapy in combination with either c i s -platin or 

cyc lophosphamide ; this type of t-AML can be classif ied by FAB 

as types M4 ( acute mye lomonocyt ic leukemia ) or M5 ( acute 

monocyt ic leukemia)  and have cytogenetic changes invo lving 
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chromosome 1 1q [ t ( 9 ; 1 1 )  ( p2 2 ; q2 3 )  i s  frequently seen] ; there 

was no preleukemic phase , and the interval between the 

treatment of the primary ma l ignancy and the deve lopment of  t

AML was short ( about 2 - 3  years ) ; patients with thi s  type of t

AML responded wel l  to ant i l eukemic therapy (DeVore et a l . ,  

1 9 8 9 ) . 

The mechanisms and mo lecular events under lying therapy

related leukemogenesis have not been studied in great depth . 

The drugs ident i f ied to cause th is new type of t-AML are 

cytotoxic agents acting ma inly through inhibition of 

topoisomerase II ( Long and stringfellow ,  1 9 8 8 ) . S ince these 

drugs are known potent clastogens and mutagens ( S ingh and 

Gupta , 1 9 8 3 ; DeMarini et a l . , 1 9 8 7 ) , it i s  reasonable to 

speculate that the clastogenic effect of  topo isomerase I I  

i nhibi tors may confer a leukemia by inducing chromosomal 

aberrations , part icularly at 1 1q2 3 . 

A recent in vitro cytogenetic study on the clastogenic 

effect of etopos ide suggested that chromosome aberrat ions 

induced by etopos ide are not random : chromosomes 1 ,  11 and 17 

were most frequent ly invo lved , wh i l e  chromosomes 4 ,  5 and X 

were seldom affected ( Maraschin et a l . , 1 9 9 0 ) . It was a lso 

noticed that R-band-rich chromosomes were s igni f i cantly more 

a ffected than G-band-rich chromosomes . Thi s  non-random 

d i stribut ion may be related to the fact that R bands are rich 

in genes that are actively transcr ibed and hence are more 

suscept ible to topoisomerase II mediated damages . It was 

suggested that , s ince most aberrat ions detected were e ither 
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trans locations or dicentrics , i l legitimate recombinations 

between non-homologous chromosomes due to incorrect repa ir 

might be the molecular event resulting in leukemogenes i s  

( Maraschin e t  a l . , 1 9 9 0 ) . 

To further def ine the genet ic loci and the critical 

regions on the chromosomes that are preferentia l ly invo lved in 

l eukemogenesis wi l l  be helpful in understanding the role 

certa in genes may play in the processes of  trans format ion . 

Deta i led informat ion on topo isomerase I I  inhibitor-induced DNA 

damage and repa ir mechanisms wi l l  also be important for 

e lucidat ing the mutagenic propert ies of these drugs at the 

molecular level . Such knowledge wi l l  be of  great value in the 

e ffort to separate the cytotox ic and mutagenic propert ies of 

these drugs in order to achieve safer chemotherapy in the 

future . 

MUTAGENESI S  

Teniposide is one of the many cytotoxic ant icancer drugs 

deve loped in recent years that produce their effects by 

interacting with cel lular DNA and caus ing a var iety of  genetic 

a lterations . Many of these drugs have been shown to be 

mutagenic and carc inogenic in a number of d i f f erent 

exper imental systems ( S ingh and Gupta , 1 9 8 3 ) . There have been 

more and more reports claiming the emergence of secondary 

ma l i gnancies among long-term cancer survivors who had been 

treated with these drugs ( Kantarj ian and Keating , 1 9 87 ;  Albain 
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e t  a l . , 1 9 9 0 ) , which rai sed the susp icion that some o f  these 

drugs may be carcinogenic . I n  view of  their widespread 

c l inical use , the mutagenic potent ial of  these drugs has come 

to be of great concern and has produced cons iderabl e  research 

interest . 

To character i z e  the ir mutagenic properties , S i ngh and 

Gupta ( 1 9 8 3 ) examined the mutagenic effects of thirteen 

ant icancer drugs ( namely , busul fan , chlorambuc i l ,  adr iamycin , 

bleomycin , daunomyc in , e l l ipticine , tenipos ide , etopos ide , 

c i s -platin , 

mitomycin C )  

dacarba z ine , lomustine , actinomycin D ,  and 

at f ive independent genet ic loci in Chinese 

hamster ovary ( CHO ) cells . The genet ic loci are those 

conferring res istance to the nuc leos ide ana logues 6-

thioguanine ( Thg') and 5 , 6 -dichlororibofuranosylbenz imida z o l e  

( DrbR ) , the cardiac glycos ide ouaba in ( OuaR ) , the protein 

synthesis inhibitor emet ine ( Emt' ) and the po lyamine synthes i s  

inhibitor methylglyoxa l-bis ( guanylhydra zone)  (Mbg' ) . Among 

these genetic loci , only the hypoxanthine-guanine 

phosphor ibosyltransferase (hgprt ) locus may be used to detect 

a wide range of genet ic lesions , inc luding those which may 

cause inactivat ion of the gene , s ince the product of th i s  gene 

is a purine salvage pathway enzyme and its function is not 

essential  for cell  growth under norma l conditions . I n  contrast 

to the hgprt locus , the other genet ic loci appear to be 

essent i a l  for cel l  surviva l and growth ( e . g . , Na + -K+ -ATPase in 

OuaR or 4 0 S  r ibosomes in Emt' mutants ) .  These loci , therefore , 

are expected to respond only to those agents which cause minor 
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DNA damages ( e . g .  base substitutions ) that lead to res i stance 

without inactivating the functions of these genes . The 

genotoxic activity of various ant icancer drugs was also 

investigated in an independent assay system based on induction 

of  s i ster chromatid exchange ( SC E )  ( Gupta and S ingh , 1 9 8 3 ) . 

Results of these studies are summari z ed in Tabl e  1 .  A l l  

thirteen ant icancer drugs showed pos itive mutagenic responses 

in both assay systems . In compar ison , tenipos ide was 

relati vely strongly mutagenic at the hgprt locus , which 

suggested that this drug is producing predominant ly the types 

of  genetic les ions ( e . g .  deletions and frameshifts ) that may 

cause inact ivat ion of the af fected funct ion . consistent with 

thi s  result is the fact that tenipos ide was also a very potent 

inducer of SCE , which makes tenipos ide a possible potent 

clastogen . 

The hgprt locus is X-l inked -- most cell  l ines have only 

one funct iona l hgprt gene . The funct ional hemizygosity of  this 

locus makes it read i ly avai lable for mutagenes is . Like the 

hgprt locus , the thymidine kinase ( tk )  locus is also one of 

the most frequently used target genes in mamma l ian c e l l  

mutagenesis assays . The t k  locus is  autosoma l ,  and norma l ce l l  

l ines have two funct ional tk genes . However , s everal 

investigators have isolated tk heterozygous l ines in rodent 

and human cel ls . The L5 178Y / TK+I-- 3 .  7 . 2C mouse lymphoma assay 

measures mutations at the funct iona l ly heterozygous tk locus 

based on resistance to tr if luorothymidine . Studies indicate 

that this assay may detect both intragen ic mutations a s  we l l  
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Tab l e  1 .  Summary of the Mutagenic Effects of Various 
Anticancer Drugs in Mutagenes i s  and SCE Assays 

Relat ive Mutagenic Responses of 
Different Genet ic Markers' 

2 5  

Anticancer 
Drugs Emt' Mbg' Thg' 

SCEb 
assay 

Chlorambuci l  + ++ + +++ +++ 

Busul fan + + ++ ++ 

Lomustine + + + 

Dacarba z ine + + 

Adriamycin ++ + + 

Daunomycin ++ + + + 

B leomyc in + + + + 

E l l iptic ine ++ +++ ++ 

Tenipos ide ++ + ++++ ++++ 

etopos ide + + +++ ++++ 

c i s -Platin +++ ++++ 

Act inomycin D ++ + + 

Mitomycin C ++ ++ ++ +++ ++++ 

• Based on the mutagenes i s  s ign i f icance ration of the observed 
mutagenic responses , the mutagen ic effects of the chemica l s  
a r e  arbitrary classif ied from - ( negat ive ) t o  ++++ ( very 
strong ) . 

b Based on the fold increase in SCE as compared to the 
untreated cel l s , the potenc ies of the chemica l s  of SCE 
induct ion are arbitrar i ly class i f i ed from + ( weak ) to ++++ 
( very strong ) . 
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a s  chromosoma l mutat ions ( intergenic events resulting from 

chromosoma l rearrangements and / or funct iona l multi locus 

deletions ) affecting express ion of the tk locus . These two 

c lasses of genet ic damage were found to produce colonies with 

d i f f erent s i z e s  that can be distinguished by an automatic 

colony counter (Moore et a l . , 1 9 8 5b ) . Sma l l-colony TK mutants 

appear to result from large scale a lterat ions to chromosome 

1 1 , which carr ies the tk locus , whi l e  large-colony mutants 

appear to represent single-gene mutations ( Hoz ier et a l . ,  

1 9 8 5 )  . 

The mutagenic and clastogen ic activities of teniposide 

were evaluated in L5 178Y / TK+I-- 3 .  7 . 2C  mouse lymphoma ce l l s . At 

a dose which resulted in approximately 2 0 %  surviva l , 

tenipos ide induced as many as about 2 , 0 0 0  tk mutants / 1 06 

survivors , and the maj or ity of the mutants formed sma l l  

colonies ( DeMar ini e t  a l . ,  1 9 87) . Compared with the above 

f igure , tenipos ide induced much fewer mutants at the hgprt 

locus in CHO cells  ( S ingh and Gupta , 1 9 8 3 ) . A reasonable 

explanation is  avai lable based on previous observat ions that 

both the tk and hgprt loci were equa l ly mutable by gene 

mutagens and weak clastogens such as EMS and ICR170 , Whereas , 

agents act ing pr imar ily by clastogen ic mechanisms , such as y

rays , and m-AMSA were extremely potent mutagens at the tk 

locus of L5 178Y cells  but were much less mutagenic at the 

hgprt locus of CHO or V79 ce l l s  ( DeMarini et a l . ,  1 9 8 7 ) . The 

heterozygos ity of the tk locus as opposed to the hem i zygous 

nature of the hgprt locus appeared to be the maj or reason for 
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the d i f f erences in the mutagenic response of the two loci . 

Mul t i l ocus events induced by potent clastogens might be 

recoverable at a functiona l ly heterozygous locus such as tk, 

where the loss of essential f lanking gene function might be 

compensated for by funct ional genes on the homo logous 

chromosome , whi l e  at a funct iona l ly hemizygous locus l ike 

hgprt, there is  no homo logous genetic mater ial to compensate 

for the loss of essential  f lanking gene functions , so that 

these mutants could not be recovered . In cytogenet ic analys is , 

tenipos ide was demonstrated to be a strong inducer of 

chromosome aberrat ions . It induced 244 aberrations / 1 0 0  c e l l s  

at 5 �g/ml ( DeMar ini e t  a l . , 1 9 8 7 ) . These results l ed to the 

conc lusion that teniposide is probably a potent clastogen in 

mamma l ian mutagenic test systems . 

The cytotoxic and mutagenic effects of tenipos ide and its 

congener etopos ide in bacter ial test systems has also been 

eva luated . In contrast to mamma lian cel l s , treatment of  either 

s .  typhimurium or E .  coli with a wide range concentrat ions of 

these drugs produced no appreciable increase in the mutation 

frequenc ies in several systems measuring either reverse or 

f orward mutations ( Gupta et a l . , 1 9 8 7 ) . Among these systems , 

two prokaryot ic forward mutat ion assays in which the exc is ion 

repa ir proficient E. coli K12 3 4 3 / 1 1 3  stra in was used , should , 

in princip l e , detect a l l  types of genet ic les ions that cause 

inacti vat ion of gal R or trpR gene products . However , treatment 

with up to 5 0 0  �g/ml of etopos ide caused no increase in 

mutation frequency in these forward mutation detection systems 
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[ i . e .  abil ity t o  grow i n  presence of ga lactose ( ga l + )  or 

resistance to 5-methyltryptophan ) .  These results , in addition 

to the fact that neither etopos ide nor teniposide showed 

s igni f icant cel lular toxicity in the prokaryotic systems 

suggested that epipodophyl lotoxins do not produce genotoxic 

les ions in bacter ial cells  ( Gupta et a l . , 1 9 87) . 

It has been widely accepted that the cytotoxic effects of  

teniposide and etopos ide are brought about by interaction with 

mamma lian DNA topoisomerase I I , wh ich breaks and rej oins 

double-stranded DNA in concert . The lack of toxic ity of these 

drugs in prokaryot ic as opposed to mamma l ian systems suggested 

that the enzymes from prokaryot ic and mamma l ian ce l l s  might 

d i f fer in the ir interaction with these drugs . The pur i f ied 

enzyme from mamma l ian sources is  a homodimer of a polypeptide 

cha in with molecular we ight of 170 kd ( Ge l lert , 1 9 8 1 ;  Wang , 

1 9 8 5 ) . The corresponding type I I  topoisomerase in bacter i a l  

systems is DNA gyrase wh ich is composed of two subunits with 

molecular weight of 9 0  kd and 1 0 0  kd , both of which are 

required for activity . The bacter ial enzyme a l so dif fers from 

the mamma l ian enzyme in that whi l e  the catalytic activity of 

mamma l i an topo isomerase I I  is dependent upon ATP , the 

bacterial DNA gyrase can cause re laxation of superhelical  DNA 

in the absence of ATP ( Ge l lert , 1 9 8 1 ;  Wang , 1 9 8 5 ) . On the 

other hand , the behavior of the bacter iophage T4 topoisomerase 

I I , a multisubunit protein , is  more s imilar to mammal ian type 

I I  topoisomerase and much less s imi lar to E .  coli DNA gyrase 

( Vosberg , 19 8 5 ) . Drugs that promote mamma lian topoisomerase 
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I I -mediated DNA c leavage also promote T 4  topo isomerase 1 1 -

mediated DNA cleavage ( Ripley e t  a l . , 1 9 8 8 ) . Therefore , the 

d i f f erences between topo isomerase II from d i f ferent biological 

systems in the ir interaction with teniposide and etopos ide may 

account for the observed results in these systems . 

A series of other drugs are a l so known to produce 

cytotoxic effects by disturbing DNA topoisomerase I I . These 

drugs belong to different chemical classes , e . g . , acridines , 

anthracycl ines and e l l iptic ines , represented by m-AMSA , 5 -

iminodaunorubicine , and 2 -Me-9 -0H-E+ , respectively . Unl ike 

epipodophyl lotoxins , these drugs interact directly with DNA 

molecules by interca lation . What they have in common with 

epipodophyl lotoxins is that they are a l l  able to stabi l i z e  the 

DNA-topoisomerase II complex . Good correlations have been 

f ound between the abi l ity of a drug to cause cleavable comp lex 

accumulation and product ion of cytotoxic ity ( Long et a l . , 

1 9 8 6 ) . For example , intercalators such as o-AMSA and 

e l l ipt icine which are less cytotox ic than their congeners m

AMSA and 2 -Me-9 -0H-E+ are also much less efficient in 

stimulating cleavable comp lex format ion and producing DNA 

strand breaks in vitro (Nelson et a l . , 1 9 8 4 ; Tewey et a l . , 

1 9 8 4 ) . Whether the intercalati ve acti vi ty plays a role in 

their cytotoxic effect is sti l l  in di spute . DNA c leavage 

act ivity of  interca lators and epipodophyl lotoxins were 

observed both in cultured mamma l ian ce l l s  and in vitro system 

with pur i f ied mamma l ian or T4 topo isomerase I I , which provided 

evidence for the invo lvement of topo isomerase II in the 
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cytotoxic effects o f  these drugs . On the other hand , DNA 

s equencing analys is revealed that topo isomerase II c leavage 

s ites produced by drugs from different chemical classes are 

d i st inctly dif ferent (Tewey et a l . , 1 9 8 4 b )  which suggested 

that although topoisomerase I I  may by the common target , the 

enzyme may interact d i f ferently with d i f ferent drugs . 

The search for the sequence speci f icities of DNA 

topo isomerase II cleavage s ites both in the absence and 

presence of the drugs has been mostly l imited to in vitro 

studies ( Spitzner and Mul ler , 19 8 8 ; Capranico et a l . ,  1 9 9 0 )  

and the va l idity of the consensus sequences i n  predicting the 

c leavage s ites in l iving cel ls has been questionable . Rather 

sUbstant ial differences have been found between the 

topo isomerase II cleavage s ites in vivo and in naked DNA 

( Udvardy and Schedl , 1 9 9 1 ) . In  one of the attempts to 

character i z e  the formation of mutations induced by 

topo isomerase II inhibitors , m-AMSA was used to induce 

mutations in bacter iophage T4 and to promote T4 topo isomerase

mediated DNA cleavage in vitro ( Ripley et a l . ,  1 9 8 8 ) . A co

speci f i c ity of the s ites of the DNA damages in the two systems 

was found . The spec i f i c  phosphodiester bonds cleaved in vitro 

are prec isely those at which frameshifts are most strongly 

promoted by m-AMSA in vi vo . Thi s  co-spec i f i c ity enabled the 

author to postu late the mo lecular events ( incorrect repa i r )  

leading from i n i t i a l  topoi somerase I I -med iated DNA damage ( a  

doubl e  strand break ) t o  the resulting frameshift mutations 

( Rip ley et a l . , 1 9 8 8 ) . Thi s  interest ing result led us to the 
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present studies designed to determine whether such co

spec i f ic ity is  also present in mamma l ian systems . 

CHO/ aprt SYSTEM 

Genet ic loci which encode nucleotide sa lvage pathway 

enzymes such as thymidine kinase ( tk )  and hypoxanthine guanine 

phosphoribosyltransferase (hgprt ) are most extens ive ly used as 

genet ic targets in mutagenesis studies . These enzymes funct ion 

to integrate free pur ine and pyr imidine bases into cel lular 

metabo l i sm and their activit ies are not essential for c e l l  

surviva l in norma l growth medium . The nonessential nature of 

these enzymes made it poss ible to detect a wide range of 

genetic a lterations by a single step forward selection for the 

mutants of these genes . The aprt gene , another such locus , 

encodes the sa lvage enzyme adenine phospho-r ibosyl trans f erase 

( APRT ) wh ich catalyzes the synthes is of adenos ine- 5 ' 

monophosphate ( AMP ) from adenine and 5 -phosphor ibosy l - 1 -

pyrophosphate ( PRPP ) . The aprt locus in Chinese hamster ovary 

( CHO ) cel l s  has been used most ly in studying sequence 

spec i f i c ity of mutagenes i s  ma inly because of the ava i l ab i l ity 

of hemizygous strains , and the sma l l  s i z e  ( 2 . 6  kb ) of the 

structura l gene which makes sequencing ana lys is much easier . 

The CHO-D4 2 2  stra in was isolated by Bradley and Letovanec 

( 1 9 8 2 ) through a direct selection method by plating wild type 

CHO c e l l s  in increas ing concentrat ions of the pur ine analogue 

d iaminopur ine ( DAP ) . Loss of APRT activity occurred in two 
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s equential  steps . About half o f  tota l APRT activity was lost 

in the f irst step , and most or all of the rema ining activity 

was lost in the second step . The 04 2 2  c e l l  l ine retained 5 0  % 

of wild type CHO APRT activity was origina l ly believed to be 

a heterozygote for aprt ( Bradley and Letovanec ,  1 9 8 2 ) . 

subsequent studies , us ing Southern blot analys is , revealed 

that the CHO-04 2 2  c e l l  l ine carried a deletion of one o f  the 

aprt a l leles , which rendered this c e l l  l ine hemizygous at this 

locus ( Nalbantoglu , 1 9 8 3 ) . This partial APRT defic ient mutant 

c e l l  l ine exhibited a stable phenotype and the rate of 

spontaneous mutation from partial to tota l APRT def iciency was 

on the order of 1 0-6 per c e l l  per generat ion ( Bradl ey and 

Letovanec , 1 9 8 2 ) . The mutation frequency could be enhanced by 

treatment with a mutagen and the aprt- mutants could be 

isolated by a s imple one step selection for res istance to the 

drugs diaminopur ine or 8 -az aadenine ( Jones and Sargent , 1 9 74 ) . 

I n  contrast , a number of heterozygous aprt l ines obtained by 

s ib-selection had spontaneous mutation frequenc ies two to 

three orders higher than that of the 04 2 2  strain . In addition , 

these sib-selected c e l l  l ines were not respons ive to the 

mutagen EMS ( Bradley and Letovanec ,  1 9 8 2 ) . However , because of 

the hemizygous nature , a potential l imitation of the CHO-

04 2 2 / aprt system has been suggested to be the possible 

exclusion of  mutationa l events that would inact ivate essential 

genes within the region of hemi zygos ity ( de Jong et a l . , 

1 9 8 8 ) . 

The hamster gene coding for APRT has been isolated by 
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us ing gene trans fer and mo lecular cloning o f  trans forming DNA 

( Lowy et a l . , 1 9 8 0 ) . The aprt gene is about 2 . G  kb and i s  

composed of 5 exons and 4 introns ( Figure 2 ) . The sequence of  

the entire gene has been determined by at least two 

independent laboratories ( Na lbantoglu et a l . , 1 9 8 G a ; de Boer 

et a l . , 1 9 8 9 ) ; the earl i er sequence appears to contain several 

errors . 

The spectrum of spontaneous mutations at the aprt locus 

has been documented . Although somewhat discrepant results are 

present , the most prominent characteristics in common have 

been the predominance of G : C  to A : T  transit ions among base 

subst itutions , which account for the maj ority of  tota l 

mutat ions , the presence of short direct repeats at the termini 

o f  sma l l  deletions and the nonrandom distr ibut ion of the 

delet ion mutat ions ( Phear et a l . , 1 9 8 9 ; Nalbantoglu et a l . ,  

1 9 8 G b ;  de Jong et a l . , 1 9 8 8 ) . The latter characteristic has 

been attr ibuted to the presence of certa in DNA sequences such 

as dyad symmetry and short direct repeats in this region of 

the gene . 
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MATERIALS AND METHODS 

TENIPOSIDE MUTAGENESIS 

Cell Culture : 

The Chinese hamster ovary ( CHO ) c e l l  subl ine D4 2 2  was a 

generous gift from Dr . B .  W .  G l i ckman . This cell  l ine is  

hem i zygous at the aprt gene and reta ins 5 0  % of wild type APRT 

enzyme activity . It was origina l ly iso lated by Bradley and 

Letovanec ( 1 9 8 2 ) . The aprt gene encodes the enzyme adenine 

phosphor ibosyl transferase which cata lyz es the synthes i s  of 

adenos ine-5 ' -monophosphate (AMP ) from adenine and 5 -

phosphoribosyl - 1-pyrophosphate ( PRPP ) . The cel l s  were 

routinely ma intained in a-Minimum Essential  Medium ( Gibco ) 

supplemented with 5 % feta l bovine serum and 2 . 5  % horse s erum 

( G ibco ) . Five mi l i l iters of penic i l l in-streptomycin ( G ibco ) 

was added to each 5 0 0  ml medium to prevent contamination . A 

water-j acketed tissue culture incubator ( Forma Scient i f i c )  

kept the ce l l s  a t  3 7 ° C ,  5 % CO, . The c e l l s  were rout inely 

subcultured upon conf luence . Fol lowing a br ief wash with 

ster i l i z ed s a l ine G ( 0 . 1  roM CaCI2 · 2H20 ,  5 . 4  roM KCI , 1 roM KH2P04 , 

0 . 6 3 roM MgS04 • 7H20 ,  1 3 7  roM NaC I , 1 roM Na2HP04 • 7HP , 1 1  % D

g lucose ) , the cells  were incubated with 3 ml of 0 . 2 5 % trypsin 

3 5  
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( Gibco ) i n  a 75 mm2 tissue culture f lask ( Costar ) for about 1 5  

minutes to detach the cel l s  from the wa l l  o f  the flask . About 

2 x 1 05 cells were transferred into a new f lask containing 2 0  

m l  o f  fresh medium . 

Freez e  storage of cel l l ines was done by spinning down a 

large number of cel l s  at 5 0 0  rpm for 10 minutes and 

resuspending them in a sma l l  volume of  fresh medium to make a 

f inal concentrat ion of 3 - 5 mi l l ion c e l l s /mI . 0 . 9  ml of the 

c e l l  suspension was combined with 0 . 1  ml ster i l i z ed dimethyl 

sul foxide in a 1 . 5  ml ster i l i z ed vial and fro z en down at -70 

°C for a period of time before the cells  were transferred into 

a l iquid nitrogen tank . 

Mutagenesis assay 

Teniposide was a generous g i ft of Bristol Myers Inc . 

Ten ipos ide powder was kept at - 2 0 ° C  and was dissolved in 

d imethyl sul foxide to 1 roM stock so lution . Al iquots of  the 

stock solut ion were kept at -70 ° C  for up to two weeks . 

Each mutagenesis exper iment started from f ive 1 , 0 0 0  c e l l  

inocula t o  minim i z e  preexist ing aprt- c e l l s  in the cultures . 

After 5 6 days of mult ipl ication , 5 x 1 05 ce l l s  were 

transferred from each inoculum to a 75 mm2 f lask conta ining 2 0  

m l  o f  fresh medium and a l l owed to sett le and enter exponent ial 

growth for one day . Four of the f ive cultures were then 

mutageni z ed with d i fferent doses of teniposide ( 0 . 0 2 - 0 . 1 6 

�g/ml ) for 1 6  hours . The control culture was treated with the 

same vo lume of dimethyl sul foxide . 
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Severa l experiments were done with calcium-depl eted 

c e l l s . Prior to the drug treatment , the ce l l s  were incubated 

in  5 roM EGTA for 4 hours to depl ete calcium from the cultures . 

Var ious amounts of tenipos ide were added to the cultures and 

the drug treatment lasted only for one hour . 

At the end of drug treatment , the medium was aspirated 

and replaced by fresh medium . The c e l l s  were allowed to grow 

for one day before they were tryps ini z ed . 

To determine cell surviva l ,  2 x 700 cells  were taken from 

each culture and plated in two 5 0  mm2 tissue culture d i shes 

( Costar ) conta ining 1 5  ml med ium . After 7 days of incubat ion , 

colonies were formed from viable cells . These colonies were 

f ixed in 4 % forma ldehyde ( F isher Scient i f i c )  for 5 minutes 

and stained by 1 % crysta l violet ( S igma ) . The number of 

colonies with 100 or more ce l l s  was counted . Cel l  surviva l for 

each culture was calculated by dividing the average number of 

colonies from each treated culture by the average number of 

colonies from the contro l  culture . 

From each tryps ini z ed culture , 2 x 106 c e l l s  were 

transferred to a new f l ask with fresh medium . At the h ighest 

drug doses , there were often less than 2 x 1 06 ce l l s  rema ining 

attached to the f lask following treatment , in which case a l l  

attached c e l l s  were transferred . The cells  were a l lowed to 

grow for 6 days in order to express the aprt- phenotype . Dur ing 

the s i x  day expression period , the c e l l s  were subcultured once 

at 2 x 1 06 c e l l s  per f l ask . 

To determine mutation frequency , a tota l of three m i l l ion 
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ce l l s  from each culture were plated i n  six 5 6  cm2 d i shes in 

s e l ective medium containing 0 . 4  mM 8 -a z aadenine ( S igma ) and 

suppl emented with 5 % dialyzed feta l bovine serum and 2 . 5  % 

d i a ly z ed horse serum ( G ibco ) . During the following 7 days of  

incubat ion , the mutated cells  which were aprt def icient could 

survive in the selective medium and form colonies . In  the 

meantime , 2 x 700 cells  were also taken from each culture at 

the end of express ion period and p l ated in nonselective medium 

with dialyzed sera . Colonies formed from these cells  were 

d ivided by the number of cel l s  plated (which was 700 cel l s )  to 

g ive the plat ing efficiency of each culture . The tota l number 

of colonies formed in selective medium out of three mi l l ion 

c e l l s , corrected by plating efficiency , were used to determine 

mutation frequenc ies : 

Number of mutant colonies 

3 X 106 x Plating effic iency 

From each drug treated culture in which the mutation 

frequency at least 8 fold greater than the background mutation 

frequency from the same exper iment , two colonies were 

isolated . Colonies were also iso lated from the control 

cultures . These c e l l  l ines were grown out in selective medium 

to a large number for DNA extract ion . 

AMPLIF I CATION OF THE APRT GENE 

Extract i on of  Genomic DNA 

From each mutant strain , about 1 08 cells  were grown , 
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tryp s i n i z ed and washed twice with cold phosphate buf f ered 

s a l ine ( 1 3 7  mM NaC I , 2 . 7  mM KCI , 8 mM Na2HP04 · 7H20 ,  1 . 4  mM 

KH2P04 ) . The cel l s  were then lysed in 1 ml d igestion buf fer [ 1 0 

mM Tris-HCI , pH 7 . 5 ,  1 0 0  mM EDTA , 0 . 5  % sodium dodecyl sul fate 

( SDS ) , 25 �g/ml proteinase K ( S igma ) ] at 3 7 D C  overnight . 5 M 

NaCI was added into the lysate to make a f inal concentration 

of  0 . 1  M. An equal volume of pheno l / chloroform ( 1 / 1 )  was mixed 

with the lysate and the mixture was centri fuged at 1 , 5 0 0  rpm 

for 10 minutes . The aqueous layer was transferred into a new 

tube and subj ected to another phenol / chloroform extraction . 

The aqueous layer of the second extract ion was then mixed with 

two volumes of 9 5  % ethano l ,  and the threaded DNA was spoo led 

out , dried , and dissolved in one vo lume of Tris-EDTA ( T E )  

buf fer ( 1 0 mM Tr is-HCI , p H  7 . 5 ,  1 mM EDTA ) . 

The extract was then digested with 5 0  �g/ml RNase ( S igma ) 

for 4 - 5 hours at 3 7  D C .  The digest was extracted twice with 

phenol /  chloroform and precipitated as descr ibed above and 

disso lved in 2 0 0 - 5 0 0  �l TE ( 1 0 mM Tr is-HCI , pH 7 . 5 ,  1 mM 

EDTA ) . The concentration of the DNA so lution was determined 

with a Beckman spectrophotometer by measur ing ultraviolet 

l ight absorbance at 2 6 0  nm . The final concentration was 

adj usted to 0 . 5  mg/ ml . 

Preparation of  PCR Pr imers 

In order to analyze the mutations which caused 

inact ivat ion of the aprt gene at the sequence leve l , the aprt 

gene was amp l i f ied by the polymerase cha in react ion ( PCR) 
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technique ( Saiki , e t  a l . , 1 9 8 5 ) . Twenty-mer-ol igonucl eotides 

which are compl imentary to the sequences f l anking each exon of  

the aprt gene were synthes i z ed and used as the pr imers i n  the 

polymerase cha in reaction ( Table 2 ) . Synthes i s  of the 

o l igonucleotides was done at the nucleic acid core fac i l ities 

at the Medical College of Virginia by phosphoramidite method . 

O l i gonuleotides were pur i f ied by ion-pair ing HPLC on a 3 . 8  x 

2 5 0  rom C- 18 co lumn ( Ra inin ultrosphere ODS ) . HPLC grade 

buf fers were f i ltered and degassed prior to use . Buf fer A 

cons isted of 5 % acetonitr i l e , 0 . 1  M tr iethylammonium acetate , 

pH 7 . 0 .  Buffer B cons isted of 5 0  % acetonitr i l e , 0 . 1  M 

triethylaromonium acetate , pH 7 . 0 .  A l inear gradient of 1 0 - 3 0  

% buffer B was appl ied to the column over 6 0  minutes of 

e lut ion time and the maj or ultraviolet-absorbing peak was 

co l lected . Pur i f ied ol igonuc leotides were dried and d i s s olved 

in distil led water . Concentrat ions of the ol igonuc l eotide 

solut ions were determined by measuring the UV absorbance on 

Beckman spectrophotometer and adj usted to 0 . 5  mg/ml . 

Po lymerase Cha in Reaction : 

Exons of the aprt gene that are located in close vicinity 

of each other were amp l i f ied together by the po lymerase cha in 

reaction . Exons 1 and 2 were amp l i f ied in one segment and 

exons 3 ,  4 and 5 were amp l i f ied in another segment . PCR was 

carried out in reaction volume of 1 0 0  � l  

containing 1 � g  of genomic DNA , 0 . 2 5 � g  of each pr imer 

f l anking the exon to be amp l i f ied and 0 . 2  roM of each 
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Table 2 .  Ol igonucleotide Primers Used in Polymeras e  Cha in 
Reactions and Sequenc ing React ions . 

Name Sequence DescriQtion position 

1U : TGTTCCCGGACTGGTATGAC upper strand exon 1 - 6 4 - -4 5  

1 L : AACAAGGAGAGGCTGGTGGC lower strand exon 1 2 0 3 - 1 8 4  

2 U :  GCCACCAGCCTCTCCTTGTT upper strand exon 2 1 8 4 -2 0 3  

2 L :  GGTTGAAGAAAGAAGGGATGG lower strand exon 2 4 2 1-4 0 1  

3 U :  CTTACACCTCAGCCCTAACA upper strand ex on 3 1 2 5 1- 1 2 7 0  

3 L :  GGAAGTAGAGTGAGAGTCTA lower strand exon 3 1 5 7 2 - 1 5 5 3  

4 U :  TAGACTCTCACTCTACTTCC upper strand exon 4 1 5 5 3 - 1 5 7 2  

4 L :  CTCTTGCTTAGACAGCACCC lower strand exon 4 1 7 3 1- 1 7 1 2  

5U : GGGTGCTGACTAAGCAAGAG upper strand exon 5 1 7 1 2 - 1 7 3 1  

5L : CTGGTGGCTCACAAAGGTCA lower strand exon 5 1 9 9 8 - 1 9 7 9  
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deoxynucleos ide triphosphate ( dNTP , Pharmac i a ) . The reaction 

buf f er cons isted of 1 0  roM Tri s-HCI , pH 8 . 3 ,  5 0  roM KCI , 1 roM 

MgC l2 and 5 0  j.£g/ml bovine serum albumin ( BSA , Sigma ) . The 

above mixture was heated to 9 5 ° C  for 5 minutes prior to 

addition of 2 units of Taq po lymerase ( Perkin E lmer-Cetus ) .  

The reaction mixture was overlaid by 5 0  j.£ l  l ight mineral o i l  

( S igma ) t o  prevent evaporation . 

Thirty cyc les of PCR were run on a Perkin E lmer-Cetus 

therma l cycler . Each react ion cyc le was composed of 1 minute 

denaturing time at 9 4 ° C ,  15 seconds ( for exons 3 ,  4 ,  5 )  or 

1 . 5  minutes ( for exons 1 ,  2 )  annea l ing t ime at 5 5 ° C  and 2 

minutes at 7 2  ° C  for po lymer i z ation . The f inal extens ion 

period was 7 minutes at 7 2 ° C .  

S ingle-stranded DNA was obtained by conducting an 

" asymmetric PCR" in which 1 0  j.£ l  of unpur i f ied double-stranded 

PCR product was used as a temp late and 0 . 5  j.£g of one of  the 

two primers was added . Twenty cyc les of reaction were run with 

the same parameters used in regular PCR . Products of 

asymmetric PCR were separated from rema ining nucleot ides and 

primers by prec ipitation with 1 volume of 4 M ammonium acetate 

and 2 volumes of 2 -propanol .  0 . 5  j.£g supercoi led p lasmid DNA 

was added to fac i l itate pel let format ion . Following 10 minutes 

o f  centri fugat ion in a microcentr i fuge , the pel let was washed 

with 70 % ethanol and recentri fuged . The dried pel l et was 

dissolved in 25 j.£l dH20 ,  and used in direct sequencing 

reactions . 
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Agarose Gel E lectrophores i s : 

PCR products were detected by 1 . 5  % agarose gel 

e l e ctrophores i s . 1 . 5  g agarose gel powder was melted in 90 ml  

d i s t i l led water on a hot plate . 1 0  mI l O  x TBE buffer ( 1 0 x 

TBE : 8 9 0  roM bori c  acid , 8 9 0  roM Tr is base , 2 0  roM EDTA) and 5 � l  

( 1 0 mg/ml ) ethidium bromide was added in the g e l  solution . The 

gel solut ion was solidif ied in a gel conta iner . A 9 �l DNA 

samp le was mixed with 1 �l loading solution ( 5 0  roM EDTA , 4 0 % 

sucrose , 1 % bromophenol blue ) and loaded on the gel . The DNA 

samples were electrophoresed in 1 x TBE buf fer at 1 0 0  volts 

for 1 to 2 hours . A Polaroid f i lm picture was taken under 

u ltraviolet l ight to visua l i z e  the DNA bands . 

DIRECT SEQUENCING OF PCR PRODUCTS 

Sanger ' s  Seguenc ing React ion 

coding regions of the aprt gene were sequenced exon by 

exon us ing the dideoxy cha in-terminat ion method ( Sanger ) unt i l  

the mutation was found . S ing le-stranded PCR products were used 

in the sequenc ing reaction . The annea l ing step was carried out 

by combining 7 �l ( 5  pmo l )  temp late DNA , 1 �l ( 5  pmo l )  of the 

o l i gonuc leotide pr imer which annea ls to the s ing le-stranded 

template and 2 �l 5 x reaction buffer ( 5  x reaction buf f er : 

2 5 0  roM Tris-HCI , pH 8 . 8 , 3 5  roM MgC lz ) .  The react ion was heated 

to 7 0 ° C  for 3 minutes and incubated at 42 °C for 10 minutes . 

The polymer i z ation react ion was triggered by adding 2 units of 

Taq po lymerase , 1 � l  a-3zP-dATP ( 8 0 0  C i / mmole , 1 0  �Ci / � l , New 
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England Nuc lear ) and 4 . 5  � l  dH20 .  The above mixture was 

vortexed and used immediately for termination reactions in 

which 4 � l  of the above reaction was transferred to each tube 

containing 4 �l of one of the termination mixes ( each 

termination mix contained 2 0  �M of each dNTP and 60 �M ddGTP 

in G-mix , 8 0 0  �M ddATP in A-mix , 8 0 0  �M ddCTP in C-mix , and 

4 0 0  �M ddTTP in T-mix) . The tubes were incubated at 7 0 ° C  for 

5 minutes before and after 1 �l " chase" ( 2  mM of each dNTP ) 

was added into each tube . The react ion was stopped by addition 

o f  4 � l  formamide-dye stop so lut ion ( 9 5 % deion i z ed formamide , 

2 mM EDTA , 0 . 5  % bromopheno l blue , 0 . 5  % xylene cyanol F F ) . 

Polyacrylamide-urea Gel Electrophore s i s  

Samples of DNA sequenc ing reactions were e lectrophoresed 

on a vertical po lyacrylamide-urea denatur ing gel which 

contained 7 % po lyacrylamide / bisacrylamide ( 2 0 : 1 ) gel in 1 x 

gel buffer ( 1 3 0  mM Tr i s  bas e ,  4 5  mM bor ic acid , 2 mM EDTA) . 

Immediately prior to pour ing the gel , 0 . 6  ml freshly made 0 . 1  

% ammonium persul fate and 4 0  � l  temed were added into 9 0  ml 

gel solution . The samples were denatured at 9 5 ° C  for 5 

minutes before be ing loaded on the sequenc ing gel . The gel  ( 3 5  

x 4 3  x 0 . 0 4 cm ) was run at 8 0  watts for various lengths of 

t ime depending on the size of the DNA fragment . 

SOUTHERN BLOT ANALYS I S  

Preparation of the aprt Probe 



www.manaraa.com

4 5  

The 3 . 8  kb Bam H I  insert o f  the p lasmid pHaprt ( Lowy et 

a l . , 1 9 8 0 )  contains the sequences coding for the enzyme APRT . 

The plasmid pHaprt was a gift of R .  Axe l and was amp l i f i ed by 

other members of this laboratory . pHaprt p lasmid ( 2 5 0  � g )  was 

f irst digested with 50 units of the restr iction endonuc leases 

Xmn I ( New England Biolabs ) at 37 °C overnight and was then 

subj ected to a second digestion with 1 2 5  units Bam H I  ( New 

England Biolabs ) at 3 7  ° C  overnight . The effectiveness of  

digestion was monitored by agarose gel e lectrophores i s . DNA 

fragments were separated on agarose gel . The 3 . 8  kb band was 

isolated and the DNA was e lectroe luted in dialysis tubing 

( Fi sher Scient i f i c )  at 5 0  vo lts overnight . TE buffer ( 2 0  roM 

Tris-HCI , pH 8 . 0 , 1 roM EDTA ) was rec irculated between two 

chambers of the electrophores is apparatus during 

e lectroelution . The electr ic current was reversed for one 

minute at the end of the e lution to detach DNA mo lecules from 

the wa l l  of dialys i s  tubing . The DNA was concentrated and 

pur i f i ed on a QIAGEN tip 2 0  according to the manufacturer ' s  

instructions . Fol lowing e lut ion by the high salt solution , the 

DNA was then ethanol precipitated by additions of 2 volumes of 

1 0 0  % ethano l followed by 1 hour of cool ing at -7 0  ° C .  The DNA 

was then spun down in a microcentr i fuge for 15 minutes .  The 

p e l l et was washed with 2 0 0  �l 70 % ethano l ,  dried and 

d i s s o lved in 60 �l dH20 .  The concentration of the DNA solution 

measured on the spectrophotometer was 0 . 3 7 �g/ � l . 

The 3 . 8  kb aprt fragment was label ed with a Bethesda 

Research Laboratories Life Technologies , Inc . ( BRL ) n i ck 
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trans lation system . I n  5 0  � l  reaction volume , 0 . 5  � g  aprt 

fragment was combined with 5 �l solution A2 ( 0 . 2  mM dATP , dGTP 

and dTTP , 5 0 0  mM Tris-HCl , pH 7 . 8 ,  50 mM MgCl2 f 1 0 0  mM 2 -

mercaptoethanol , 1 0 0  �g/ml nuclease-free BSA) , 9 0  � C i  a_TIp 

dCTP ( 1 0 mCi /ml , 3 0 0 0  C i / mmloe ) , 5 � l  solut ion C ( 0 . 4  U / � l  DNA 

Po lymerase I ,  4 0  pg/ � l  DNase I ,  5 0  mM Tris-HCl , pH 7 . 5 ,  5 mM 

Mg-acetate , 1 mM 2 -mercaptoethano l ,  0 . 1  mM PMSF , 5 0  % 

g lycerol , 1 0 0  �g/ml nuclease-free BSA) . The reaction mixture 

was incubated at 1 5 ° C  for 1 . 5  hours and 5 �l solut ion D ( 0 . 3  

M EDTA , pH 8 . 0 ) was added to stop the reaction . The 32p labeled 

probe was pur i f ied on QIAGEN tip 20 followed by ethanol 

prec ip itation and dissolved in 2 0 0  � l  TE buf fer ( 1 0 mM Tris

HCl , pH 7 . 5 , 1 mM EDTA) . Radioactivity of  the probe ( -2 x 1 08 

cpm / � g )  was measured on a Beckman l iquid scint i l lation 

counter . 

D igestion of Genomic DNA 

For complete digestion , 10 �g genomic DNA was treated 

with 2 0 0  units restr iction endonuc leases Pst I or Bam HI ( both 

from New England Biolabs ) in the buffers provided by the 

manufacturer at 3 7 ° C  overnight . Ethanol precipitation was 

carried out by combining the samples with one tenth volume of 

3 M sodium acetate and two vo lumes of 100 % ethano l .  Fol lowing 

1 hour of cool ing at -7 0 ° C ,  the DNA was spun down in 

microcentr i fuge and the pel lets were washed and dried . DNA was 

d i s s olved in 40 � l  dH20 and 5 � l  loading solution ( 4 0  % 

sucrose , 2 0  mM EDTA , 0 . 1  % bromophenoblue ) .  The samp l e s  were 
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then loaded o n  a 3 6 0  m l  1 % agarose g e l  in TAE buffer ( 4 0  mM 

Tris-acetate , 2 mM EDTA ) conta ining 0 . 5  �g/ml ethidium 

bromide . Also loaded on the agarose gel were 1 ng of the 

unlabe led 3 . 8  kb Bam HI fragment of pHaprt and a 1 kb s i z e  

marker which i s  a mixture of DNA fragments o f  s i z es between 

7 5 0  base pairs and 12 kb . Electrophores i s  was carried out in 

1 x TAE buf fer at 4 0  vo lts for 24 hours . A Polaroid picture of 

the gel was taken under ultraviolet l ight with a ruler p l aced 

on the s ide of the gel so that the distances to which the 

markers migrate could be determined on the picture and in 

turn , the s i z es of the DNA fragments on the blot could be 

estimated . 

Southern Transfer and Hybr idization 

The agarose gel conta ining fractionated DNA samples was 

soaked in 2 0 0  ml 0 . 2 5 N HCI for 1 0  minutes ( acid depurination)  

fol lowed by soaking in 200 ml denaturation solution ( 1 . 5  M 

NaC I , 0 . 5  M NaOH ) twice for 1 5  minutes and in 2 0 0  ml 

neutral i z ation solut ion ( 1 . 5  M NaCI , 1 M Tris-HCI , pH 7 . 4 ) 

twice for 1 5  minutes . 

The buffer used for blotting was 1 0  X SSC ( 1  X SSC : 0 . 1 5 

M NaCI , 0 . 0 1 5  M sodium c itrate , pH 7 . 0 ) . The blott ing stack 

was assembled as follows : one sheet of S & S  GB0 0 3  f i lter paper 

saturated with blotting buf fer was p laced on a glass p late 

with both s ides hanging down and dipping into blotting buf fer 

in the container ; three p ieces of GB0 0 3  f i lter paper cut to a 

s i z e  s l ightly larger than the gel and saturated with blott ing 
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buf f er ; the gel ; Nytran membrane cut t o  the s i z e  of  the gel 

and saturated with blotting buffer ( a ir bubbles under the gel 

and between gel and Nytran membrane were removed ) ;  three 

p ieces of GB0 0 3  f i lter paper saturated with blotting buf fer ; 

and a 1 . 5  inch stack of paper towe l s . On top of the stack , a 

l ight weight was added to keep a l l  layers compressed . Transfer 

was continued at room temperature overnight . The Nytran 

membrane was then soaked in 1 0 0  ml 5 x sse for 5 minutes to 

remove gel particles and baked at 75 °e for 1 hour to 

immob i l i z e  DNA fragments on the membrane . 

The completely dried Nytran membrane was soaked in 2 0  ml 

prehybridization buffer [ 6  x sse , 1 0  x Denhardt ' reagent ( 0 . 2  

% Ficol l ,  0 . 2  % polyvinylpyrro l idone , 0 . 2  % BSA ) , 0 . 5  % sodium 

dodecyl sul fate ( SDS ) , 1 0 0  Mg low mo lecular we ight DNA ] at 4 2  

° e  for 2 hours . 

Hybridizat ion was carried out in a 

container in 3 0  ml hybridizat ion buf fer 

capped plastic 

(50  % deion i z ed 

formamide , pH 7 . 4 ,  6 x sse , 0 . 5  % SDS , 5 0  Mg low molecular 

weight DNA , 8 % dextran sulfate 500 and 1 06 cpm/ml probe ) at 

42 °e overnight . 

The Nytran membrane was subj ected to low and high

stringency washes : twice for 1 5  minutes each in 100 ml 6 x 

sse , 0 . 2  % SDS at room temperature ; twice for 1 5  minutes each 

in 1 0 0  ml 1 x sse , 0 . 6  % SDS at 37 ° e ;  and once in 1 0 0  ml 0 . 1  

x s s e , 1 % SDS at 6 5  ° e  for 1 hour . The membrane was b lotted 

dry and wrapped in plastic wrap prior to autoradiography which 

was at -7 0  °e with an intens i f ier screen . 



www.manaraa.com

4 9  

IN VITRO DNA CLEAVAGE REACTION 

Nuc l ear Enzyme Extract ion 

CHO-D4 2 2  ce l l s  were grown in a-Minimum Essent i a l  Medium 

supplemented with 1 0  % fetal bovine serum and 5 % horse serum . 

Ce l l s  were ma inta ined in exponenti a l  growth in spinner f lasks 

at 37 · C .  A tota l of 5 x 1 08 cells  in 1 l iter vo lume were 

sedimented and washed three t imes with cold buf fer A ( 0 . 15 M 

NaCI , 1 0  mM KH2P04 , pH 7 . 5 ) . Cells  were suspended in 8 . 7 5 ml 

buf fer G [ 5  mM KH2P04 , 2 mM MgC I2 , 4 mM d ithiothreital ( DTT ) , 

0 . 1  mM Na2EDTA , pH 7 . 0  l ,  and incubated on ice for about 1 0  

minutes unti l  9 0  % of the c e l l s  were stained with trypan blue 

whi le rema ining intact . Ce l l s  were checked every 5 minutes 

under a microscope . The cell  suspension was immediately 

centr ifuged at 400 x g for 5 minutes . The supernatant was 

aspirated , and the pellet was resuspended in 8 ml buf fer H ( 5  

mM KH2P04 , 2 mM MgC lv 4 mM DTT , 0 . 1  mM Na2EDTA , 0 . 2 5 M sucrose , 

pH 7 . 0 ) . The cell  suspens ion was layered over 3 ml of buf fer 

I ( 5  mM KH2P04 , 2 mM MgCI2 , 4 mM DTT , 0 . 1  mM Na2EDTA , 0 . 3  M 

sucrose , pH 7 . 0 ) , and centr i fuged at 2 , 0 0 0  x g for 2 0  minutes . 

The c e l l  pel l et was resuspended in 0 . 5  ml buffer J ( 5  mM 

KH2P04 ,  4 mM DTT , 1 mM Na2EDTA ) , and incubated on ice for 1 5  

minutes . 0 . 5  ml of buf fer L ( 4 0  mM Tris-HCI , 0 . 7  M NaCI , 4 mM 

DTT , 6 0  % g lycerol , pH 7 . 5 ) was added , and vortexed . The c e l l  

suspension w a s  incubated on ice f o r  3 0  minutes and 

u ltracentr i fuged ( Beckman Ti 7 0 . 1  rotor ) at 1 0 0 , 0 0 0  x g for 1 

hour at 4 · C  in an Oak Ridge tube . The supernatant which 
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contains nuclear enzyme topo isomerase I I  was a l i quoted , and 

stored at -7 0 ° C .  The following prote inase inhibitors were 

added to buffers G ,  H ,  I ,  J and L immediately before use : 1 roM 

ben z amidine , 10 J.lg/ml soybean trypsin inhibitor , 5 0  J.l l /ml 

l eupept in , and 1 roM PMSF . 

Test of Nuc lear Enzyme Act ivity 

Supercoi l ed DNA was used as substrate to test DNA 

c leavage activity of the nuc lear extract . The c leavage 

reaction was carried out in 1 0 0  J.ll react ion buffer ( 1 0 roM 

Tris-HC1 , pH 7 . 4 ,  5 0  roM KC1 , 5 roM MgC 12 , 0 . 1  roM EDTA , 1 roM 

ATP ) with 0 . 4  J.lg supercoi led DNA , 1 0  J.lM teniposide and 0 . 5  J.l l  

- 4 J.l l  nuclear extract . The reaction was incubated a t  3 7 ° C  

for 3 0  minutes and terminated by addition o f  SDS and 

proteinase K ( 1  % and 0 . 1  mg/ml ) and incubat ion at room 

temperature for 3 0  minutes . The reaction mixture was 

e l ectrophoresed on an agarose gel to separate DNA in d i f f erent 

forms ( supercoi led , circular , l inear ) wh ich was an indication 

of  c leavage . 

Preparation of DNA Substrates 

To prepare end labeled PCR products of exons 2 ,  3 ,  4 and 

5 of the aprt gene , PCR pr imers f lanking these exons were 5 ' -

32P-end- labe led by the forward reaction . In 3 6  J.l l  reaction 

vo lume , 1 . 5  J.lg each pr imer was mixed with 2 5  J.l l  ( 8 3  pmo l )  �-
32p-ATP ( 3 0 0  C i / mmole , DuPont ) , 3 . 6  J.l l  forward reaction buf fer 

( 0 . 5  M Tris-Cl , pH 7 . 5 ,  0 . 1  M MgC 12 , 50 roM DTT , 0 . 5  
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mg/ml BSA) , 1 � l  1 0 0  mM spermidine , 2 0  units T 4  polynucleotide 

kinase ( Promega ) and incubated at 3 7 ° C  for 1 hour . The 

reaction was terminated by adding 1 �l 0 . 5  M EDTA and heating 

to 7 0 ° C  for 1 0  minutes . Labe led o l igonucleotide primers were 

ethano l-precipitated and dissolved in 30 � l  of dH20 .  

A tota l o f  8 labeled primers were used separate ly to 

generate 8 PCR products of exons 2 ,  3 ,  4 and 5 .  Four o f  them 

had 32p labe l at 5 '  -ends of upper strands and the other 4 

products had 32p label at 5 '  -ends of lower strands . PCR was 

carr ied out in 1 0 0  � l  PCR buffer descr ibed ear l ier with 0 . 2  mM 

each dNTP , 0 . 1  �g pHaprt plasmid ( temp late ) ,  15 � l  label ed 

pr imer and 0 . 2 5 �g unlabeled pr imer of the oppos ite strand . 

The mixture was heated to 9 5 ° C  for 5 minutes before 2 units 

of  Taq polymerase was added and over laid with 5 0  � l  minera l 

o i l  to prevent evaporat ion . Twenty cycles of reaction were 

carri ed out on Perkins E lmer cetus therma l cyc ler , each at 9 4  

° C  for 1 minute , 5 0 ° C  for 1 . 5  minutes , 7 2 ° C  for 1 minute and 

f inal extension period at 72 °C for 7 minutes . 

PCR products were pur i f ied by precip itation with 1 0 0  � l  

4 M ammonium acetate and 2 0 0  � l  2 -propanol . Following 1 0  

minutes of incubation a t  room temperature , the DNA was 

centri fuged in a microcentrifuge for 10 minutes and the pellet 

was washed , dried and dissolved in 17 � l  H20 .  To ensure that 

the substrates were ful l  length mo lecules , the products were 

reacted with 1 �l Klenow fragment and 0 . 5  �l 2 mM dNTP mix at 

3 0 ° C  for 15 minutes . The reaction was stopped by addition of 

1 �l 0 . 5  M EDTA . 
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End labeled PCR products were pur i f ied o n  an 8 % 

polyacrylamide/ bisacrylamide ( 3 0 : 1 )  nondenatur ing gel ( 3 0  x 4 0  

x 0 . 0 8 cm) prepared the same a s  was done for denaturing gel . 

The samples were e lectrophoresed at 3 0  watts for 4 . 5  hours . An 

X-ray f i lm was exposed to the gel for 5 minutes and was used 

to direct isolation of the DNA bands of  interest . I s olated DNA 

fragments were e lectroeluted in dia lys i s  tubes in TE buffer 

( 2 0  roM Tris-HCI , pH 8 . 0 ,  1 roM EDTA) at 5 0  vo lts overnight in 

a hor i z onta l agarose gel box . The buf fer was recirculated 

dur ing e lution . E lectr ic current was reversed for 1 minute 

before the DNA in the dialys i s  tubes was concentrated on 

QIAGEN tip 20 according to manufacturer ' s  instruct ions . 

Fol lowing ethano l prec ipitat ion , the end labeled PCR products 

were disso lved in dH20 to make f inal concentrat ion 

approximately 0 . 0 1 �g/ � l  which was est imated by comparison 

with samples of known concentrat ion on an agarose gel . 

Preparat ion of Pur ine Markers 

Each end labeled PCR product ( 0 . 0 2 �g) was heated to 8 0  

° C  i n  1 0 0  �l  0 . 1  M KCI , 1 0  roM Sod ium citrate , pH 4 . 0  for 7 . 5  

minutes . Following addition of 2 0  � l  1 N NaOH the samp l e s  

were heated to 9 0 ° C  f o r  3 0  minutes . Twenty micro l iters of 

1 N HCI and 5 �g tRNA were added and the samples were ethanol 

precip itated and dissolved in 1 0  � l  H20 and 1 0  �l formamide

dye so lut ion ( 5 0  % deion i z ed formamide , 2 roM EDTA , 0 . 5  % 

bromophenol blue , 0 . 5  % xylene cyanol FF) . 
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In vi tro DNA Cleavage React ion and Gel E lectrophore s i s  

The end labeled DNA substrates ( - 0 . 0 2 �g)  were cleaved i n  

v i  tro in the presence of 2 � l  topo i somerase I I  a n d  1 0  � M  

tenipos ide . Topoisomerase I I  used in  thi s  experiment w a s  a 

generous gift from Dr . Y .  Pommier . It was extracted from mouse 

l eukemia ce l l  l ine L12 1 0  and was pur i f ied on HPLC . C leavage 

reactions were carried out in 20 �l react ion buffer ( 0 . 0 1 M 

Tris-HCI , pH 7 . 5 ,  0 . 0 5 M KCI , 5 roM MgC I2 , 0 . 1  roM EDTA , 1 roM 

ATP and 15 �g/ml BSA) at 3 7 ° C  for 1 0  minutes . React ions were 

stopped by addition of SDS , EDTA and prote inase K with f inal 

concentrat ions of 1 % ,  10  roM and 250 �g/ml , respect ive ly , and 

incubat ion at 4 2 ° C  for 1 hour . Cleaved fragments were ethanol 

precipitated and dissolved in var ious vo lumes of formamide-dye 

so lut ion ( 9 5  % deion i z ed formamide , 2 roM EDTA , 0 . 5  % 

bromophenol blue , 0 . 5  % xylene cyanol FF)  depending on the 

yield of prec ipitation . 

The samples were loaded on a 7 % po lyacrylamide-urea 

denatur ing gel and electrophoresed at 80 watts . 
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RESULTS 

Ten ipos ide Mutagenes is 

Independent cultures of CHO-D4 2 2  c e l l s  were mutageni z ed 

by tenipos ide at different concentrations for 1 6  hours and the 

c e l l s  were a l lowed to grow for 6 days before undergoing aprt

mutant selection . Dur ing the 6 days , the APRT enzyme rema ining 

in the cells was di luted by degradat ion as wel l  as c e l l  

divis ion so that the mutant phenotype could be expressed . The 

numbers of 8 -az aadenine resistant mutant colonies in each 

culture were counted at the end of the selection period and 

the mutation frequenc ies were calculated . Concurrent with 

these procedures , a sma l l  fraction of the c e l l s  was taken from 

each culture after the cells were treated with tenipos ide and 

p l ated in norma l medium for determinat ion of ce l l  surviva l .  

The results of teniposide mutagenesis studies are 

presented in Table 3 .  An exponenti a l  drop in cell surviva l was 

observed with increas ing drug concentrations as was expected . 

The frequency of teniposide- induced mutat ions increased in a 

dose-dependent fashion at lower drug doses . However , start ing 

from the doses that caused around 3 0  % c e l l  surviva l , the 

mutation frequency quickly reached a plateau which is about 

5 4  
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Tab l e  3 .  Average Cell  Surviva l and Mutation Frequency 
at the aprt Locus* 

Percent Mutation 
Dose Surviva l F:!::equency 

( �g /ml ) x ± s . e .  ) ( x ± s . e .  ) 

0 1 0 0  ( n=2 2 )  1 . 4  x 1 0-6 ± 0 . 18 ( n=4 5 )  

0 . 0 2 7 2  ± 6 . 6  ( n=9 )  5 . 1  x 1 0-6 ± 1 .  5 6  ( n=9 )  

0 . 0 4 5 0  ± 4 . 1  ( n=2 3 )  8 . 1  x 1 0-6 ± 1 . 4 4 ( n=2 0 )  

0 . 0 6 3 7  ± 3 . 1  ( n=4 5 )  9 . 8  x 1 0-6 ± 1 . 15 ( n=4 8 )  

0 . 0 8 2 7  ± 3 . 6  ( n=3 3 )  1 0 . 2  x 1 0-6 ± 1 . 9 9 ( n=3 2 )  

0 . 1 6 2 0  ± 6 . 2  ( n=1 3  ) 1 0 . 8  x 1 0-6 ± 4 . 2 9 ( n=9 )  

* The exper iments were done under the standard mutagenes i s  
protoco l in which the ce l l s  were treated with tenipos ide for 
16 hours . 
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1 0  f o ld greater than the background ( spontaneous ) mutation 

frequency . 

In the hope of further maxim i z ing the drug- i nduced 

mutation frequency , several experiments were done under 

d i f f erent var iations of mutagenes i s  protocol .  F irst of  a l l , 

s ince it was reported that calc ium dep letion was an effect ive 

measure to protect cells  from drug cytotoxic ity ( Bertrand et 

a l . , 1 9 9 0 ) , the ce l l s  were incubated with EGTA for 4 hours 

f o l lowed by 1 hour drug treatment . However , the result 

indicated that calc ium dep letion did not improve mutabi l ity of  

the c e l l s  at increasing doses of tenipos ide ( Table 4 ) . 

The second attempt was to a l low mutageni z ed c e l l s  to 

multiply in suspension culture us ing sp inner f lasks ( Breimer 

et a l . , 1 9 8 6 ) , so that pro l i feration of the mutant c e l l s  would 

not be inhibited due to c e l l  conf luence as wou ld happen i f  the 

c e l l s  were grown in tissue culture f lasks . The probl em was 

that whi l e  the drug- induced mutat ions were only s l ightly 

increased , the background mutation frequencies were doubl ed or 

trip led . This is in contrast to results of Bre imer et a l . 

( 19 8 6 )  who reported a much lower spontaneous mutation 

frequency for cel ls growing in suspens ion . 

Fina l l y ,  the c e l l s  were synchroni z ed in the presence of 

excess thymidine , so that the cells could be treated in e ither 

GJ or G2 phase of the cell  cycle . However , no s ignif icant 

d i f f erence between the two groups was observed : mutation 

frequencies were approximately the same as for unsynchroni z ed 

cel l s . 
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Table 4 .  Average Cell  Surviva l and Mutation Frequency 
at the aprt Locus 

Under the Condition of Calc ium Depletion 

Percent Mutation 
Dose Surviva l F;:equency 

( JLg/ml ) x ± s . e .  ) ( x ± s . e .  ) 

0 1 0 0  ± ( n=5 )  0 . 5  x 1 0-6 ± 0 . 14 ( n=5 )  

0 . 0 4 9 8  ± 2 . 0  ( n=3 )  6 . 0  x 1 0-6 ± 1 . 5 2 ( n=3 )  

0 . 0 8 1 0 0  ± 0 . 0  ( n=4 )  3 . 2  x 1 0-6 ± 0 . 8 8 ( n=4 )  

0 . 1 6 9 4  ± 4 . 3  ( n=5 )  5 . 8  x 1 0-6 ± 1 .  0 6  ( n=4 )  

0 . 3 2 6 0  ± 4 . 5  ( n=5 )  3 . 5  x 1 0-6 ± 1 . 4 9 ( n=5 )  

0 . 6 4 4 0  ± 8 . 9  ( n=4 )  5 . 0 x 1 0-6 ± 1 .  59  ( n=4 )  

* The exper iments were done under the condition of calc ium 
dep l etion in which the cel l s  were treated with tenipos ide for 
one hour in the presence of EGTA . 
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I n  order t o  verify that the mutagenes i s  protocol we 

adopted was va l id ,  mutation frequencies at the aprt locus and 

at the hgprt locus were compared . hgprt- mutants were s e lected 

with 6 -thioguanine ( Gupta and S ingh , 1 9 8 2 ) . The mutation 

frequency at the hgprt locus was 5 to 1 0 -fold greater than the 

aprt mutation frequency ( Table 5)  and was comparable to values 

obtained for the same locus by other investigators in CRO 

cel l s  ( S ingh and Gupta , 1 9 8 3 ) . Thus , the nature of the aprt 

locus rather than the treatment protocol was probably 

responsible for the relatively low recovery of the tenipos ide

induced mutants . 

Sequence Ana lys is of the Mutat ions 

aprt- mutants were collected for DNA sequence analys i s . 

Two mutant colonies ( s i sters ) were picked from each 

independently mutageni z ed culture for which the mutation 

frequency of the culture was at least 8 -fold greater than the 

background mutat ion frequency from the same exper iment . 

Mutants formed spontaneously were also isolated . To ensure 

that no colonies derived from a same mutant cel l  were 

inc luded , when the mutat ion was found to be ident ical between 

s i ster mutant c e l l  l ines , one of them wou ld be e l iminated from 

the data pool . 

Cel lular DNA from each mutant stra in was extracted and 

the mutated aprt gene was amp l i f ied by PCR in two segments . 

Each segment contains exons that are located in close vicinity 
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Tabl e  5 .  compari son of the Mutation Frequencies 
at the aprt and hgprt Locus* 

Dose % Surviva l 
aprt M . F .  

x 10-6 
hgprt M . F .  
x 1 0� 

( ",g im l )  ( x ± s .  e . ) ( x ± s .  e . ) ( x ± s .  e . ) 

0 ( n=2 )  1 0 0  0 . 2  ± 0 . 2  5 . 2  ± 4 

0 . 0 4 ( n=3 )  7 4  ± 1 9  5 . 7  ± 3 . 1  3 0 . 7  ± 7 

0 . 0 6 ( n=2 )  7 2  ± 8 8 . 8  ± 7 . 2  5 8 . 0  ± 1 1  

0 . 0 8 ( n=3 )  4 6  ± 1 0  7 . 9  ± 0 . 8  6 2 . 9  ± 2 7  

* The exper iments were done under the standard mutagene s i s  
protocol in which the ce l l s  were treated with tenipos ide for 
16 hours . hgprt mutants were selected in medium conta ining the 
tox i c  pur ine analog 6 -thioguanine . 
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to each other . Exons 1 and 2 were amp l i f ied in one segment and 

exons 3 ,  4 and 5 were amp l i f ied in another segment . peR 

products bearing sma l l  delet ions or insertions could usua l ly 

be detected by agarose gel e lectrophores i s  ( Figure 3 ) . Three 

of  the drug-induced mutants were shown to be insert ions of 

about 1 9 0  to 3 3 0  base pairs . These bigger insertions are 

d i f f icult to ana lyze at the DNA sequence level , because 

insertions of such s i z es could not be proper ly amp l i f ied to 

yield a homogeneous peR product (mutant 30 in Figure 3 )  even 

though a longer extension time was a l l owed in each reaction 

cyc l e . S ince a s ingle-stranded peR product was used in the 

s equencing reaction , when there was no clean regular peR 

product to serve as template , no usable s ing le-stranded peR 

product could be generated to serve as a temp late in the 

sequencing reaction . As a result , the s i z e s  of these 

insert ions were determined by comparing the peR products with 

s i z e  markers on agarose ge ls . Another seven mutants were found 

to have miss ing peR products , which indicated possible large 

deletions or rearrangements .  These mutants were also excluded 

from sequence analys i s  but were subj ected to Southern blot 

analys i s  in order to determine the nature and s i z es of  the 

alterations . For most of the spontaneous and drug- induced 

mutants , the peR products of the aprt gene were able to be 

amp l i f ied further in an asymmetr ic manner where one of  the two 

DNA strands were preferent i a l ly synthe s i z ed . The s ingle

stranded products obtained from the asymmetric peR were then 

sequenced by Sanger ' s  sequenc ing reaction to reveal the 
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F igure 3 .  PCR products of exons 3 ,  4 and 5 of the aprt gene 
shown on a 1 . 5  % agarose gel . Lanes C are wild type PCR 
products ( 7 4 7  base pairs ) . Lane 20 shows that the PCR product 
of  mutant 2 0t is miss ing . Lane 3 0  shows that mutant 3 0t 
carries a insertion of about 2 9 0  base pairs which was 
est imated by compar ing the migration distance of the mutant 
DNA fragment with that of the wild type DNA fragment on a 
semi - log p lot of 1 kb s i z e  markers . Lanes 12 and 2 5  show that 
mutants 12t and 2 5t carry deletions of 46 and 2 1  base pairs , 
respectively , which was determined by DNA sequencing . 



www.manaraa.com

u
 

a
 

M
 

a
 

N
 

u
 

62 



www.manaraa.com

6 3  

mutations ( Figure 4 ) . 

The achievement of successful sequenc ing was bui lt on 

many attempts and fai lures . F irst of  a l l , denatured doubl e  

stranded peR product w a s  used 

however , no sequence banding 

in the sequenc ing react ion ; 

pattern was shown on the 

sequencing gel , which suggested that the peR product quickly 

annea led and the sequenc ing primer could not anneal to the 

doubl e-stranded temp late . When s ingle-stranded template was 

used in the reaction , too many bands were shown on the 

sequenc ing gel , suggesting that the presence of peR pr imers 

probably caused unwanted sequenc ing react ions to occur . 

D i f ferent purif icat ion procedures were tr ied to e l iminate the 

peR pr imers as wel l  as nucleotides in the asymmetr i c  peR 

product . Among them , centr icon ultraf i ltrat ion columns were 

used but s ingle-stranded DNA molecules were found to bind to 

the f i lter membrane ; hydroxyapatite pur i f ication of s ingle

stranded asymmetr ic peR product was a l so tr ied unsuccessfully . 

F i na l ly , s ingle-stranded peR product was purif ied by co

precipitation with 0 . 5  �g supercoi led DNA in 1 vo lume of  4 M 

ammonium acetate and 2 volumes of 2 -propanol . 

It was also found that higher qua l ity sequenc ing data 

were obtained i f  an interna l pr imer ( see Table 2 ) , not used in 

the initial peR , was used either for generat ion of the 

asymmetr ic product or for the sequenc ing react ion . 

s i xty e ight teniposide-induced and 4 2  spontaneous mutants 

were analyz ed at the DNA sequence leve l of the aprt gene . 

Thirteen of the spontaneous mutant sequences were generous ly 
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F igure 4 .  DNA sequence a lterat ions shown o n  the 
polyacrylamide denatur ing gel . Lanes 1 through 5 represent 5 
mutants ana lyz ed . Letters A ,  C ,  T and G t e l l  the nuc leotide 
the bands represent . Lanes 2 show an insertion mutation the 
mutant carr ies ; the arrow at the left shows the beginning of  
the sequence shift due to the insertion . Lanes 5 show a base 
sUbst itut ion mutation the mutant carr ies ; the arrow at the 
right indicates the T � C base sUbst itut ion ( B . S . ) .  
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provided by Dr . F .  Austin from the same laboratory . The types 

of  spontaneous and drug- induced mutations are categori z ed in 

Tables 6 and 7 and summari z ed in Tables 8 and 9 ,  respectively . 

Among a l l  types of spontaneous mutat ions , 64 % are base 

substi tut ions . Whi l e  the frequenc ies of transit ions versus 

transvers ions are we l l  balanced , G · C  � A · T  accounts for 7 1  % 

of the trans itions and 3 7  % of tota l base sUbstitutions . 

F igure 5 shows that most of the sUbstitutions targeted amino 

acids which were previous ly recogn i z ed ,  but several 

sUbstitutions took place at s ites where mutations have never 

been detected before . 

Twenty-one percent of the spontaneous mutations are sma l l  

delet ions ranging from 1 t o  2 9  base pairs i n  s i z e . Most o f  

these sma l l  deletions are framed by short direct repeats ; one 

copy of the repeated sequence is inc luded in the deleted 

fragment and the other one is reta ined in the novoj unction . 

Three dupl icat ions were also observed . A cluster of 5 

deletion/dup l ication mutations is located in a region of exon 

5 where a secondary structure could be formed ( Figure 6 ,  the 

second stem-loop structure ) .  

Three of the 4 2  spontaneous mutations were found to have 

norma l sequences of a l l  5 exons . The a ltered structures may 

res ide in the regulatory components outs ide coding regions of 

the gene . Such cases were also encountered by other 

investigators ( Phear et a l . , 1 9 8 9 )  and were d i f f icult to 

exp l a in . 

The spectrum of tenipos ide- induced mutat ions i s  quite 
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Table 6 .  Categor i z ed spontaneous mutat ions . Lower case 
l etters in deletion and insertion mutations represent the 
deleted or inserted DNA sequences . Short direct repeats 
appearing at the ends of deletion mutations are underl ined . In 
the mutant sequence , one copy of the repeat is retained ; thus , 
the actua l endpo ints of the deletion or insertion are 
indeterminate within the repeat , and are arbitrar i ly shown in 
the left most poss ible position . 
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Type o f  Mutation Locat ion Amino Acids 
stra in Mutation Seguence (b}2 of gene) Re}21acement 

5 8 s  G - C  .... A - T  TGGTG G AGCTG 1 8 4 1 E .... Q 1 5 8  

5 9 s  G - C  A - T  TGGAG G TAAGA 1 6 6 1  SJ 

6 1 s  G - C  A - T  ACTTC C CCATC 5 8  P S 2 0  

6 7 s  G - C  A - T  TCCTG G CCACT 1 6 5 1  A T 1 3 1  

8 5 s  G - C  A - T  TTTAG G TGAGA 8 1  SJ 

8 8 s  G - C  A - T  CACTG G AGGTA 1 6 5 8  G E 1 3 3  

1 0 0 s  G - C  A - T  AACTA G AAATC 1 5 9 1  E K 1 1 1  

1 1 8 s  G - C  A - T  CATCC G GAAGC 1 3 6 6  R Q 8 7  

3 5 _ 6  G - C  A - T  CAGGG G ATTCA 1 3 0 9  G E 6 8  

3 7 _ 6  G - C  A - T  CCTGG G CTGTG 1 3 5 1  G D 8 2  

6 3 s  A - T  G - C  TAGAC T CCAGG 1 3 0 2  S P 6 6  

6 4 s  A - T  G - C  CAGGG A TATCT 2 1 1  D G 2 8  

1 0 3 s  A - T  G - C  GAAGG A CCCCG 2 3 2  D G 3 5  

1 1 0 s  A - T  G - C  AGATG A TCTCC 1 6 4 3  D G 1 2 8  

6 5 s  A - T  C o G GCGCA T CCGCA 3 8  I S 1 3  

9 4 S  A - T  C o G TTCCC A GGGAT 2 0 7 SJ 

9 5 s  A - T  C o G GAGTG A CTGGA 1 9 1 2  stop C 

1 1 5 s  A - T  C o G GCTGG T GGCGC 2 6  V G 9 

3 4 _ 6  A - T  C o G CTGTT T AGGTG 7 8  F L 2 6  

4 1 .  5 A - T  C o G GCTGG T GGCGC 2 6  V G 9 

4 2 _ 1  A - T  C o G GCCTG T GAGCT 1 7 8 9  C W 1 4 0  

8 7 s  G - C  C o G TGGTG G AGCTG 1 8 4 1  E Q 1 5 8  

1 1 6 s  G - C  C o G CCTGG G CTGTG 1 3 5 1  G A 8 2  

4 0 _ 2  G - C  C o G CAGGG G ATTCT 1 3 0 9  G A 6 8  

5 7 s  G - C  T - A  GCAGG C GAGTG 3 17 SJ 
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1 1 7 5  

8 9 5  

8 6 5  

4 1 . 3 

1 1 4 5  

6 6 5  

1 0 7 5  

7 8 5  

6 2 5  

4 2 . 2  

4 2 . 4  

4 1 . 1 

3 3 . 6  

1 0 4 5  

6 0 5  

3 9 . 6  

4 2 . 5  

G · C  T · A  CCTGG 

A · T  T · A  GCGCA 

1 bp delet ion 

1 bp delet i on 

5 bp deletion 

9 bp deletion 

1 1  bp deletion 

16 bp deletion 

18  bp deletion 

18  bp deletion 

G CTGTG 1 3 5 1  G V 

T CCGCA 3 8  I N 

7 
GGCGGaATCTG 

4 4  
CGCAGtTTCCC 

3 3  
CGCAGcgcatCCGCAG 

2 9 9  
GCAAGatcgactacATCGCAGG 

1 7 7 5  
AACCAtgtgcgctgccTGTGAGCT 

1 7 8 3  
GCGCTq££tgtgagctgctggGCCAG 

1 8 1 7  1 8 3 7  
TGAGGtggtggag . . .  gagccTGGTGGAG 

1 9 8  
TCTCCttgtt . . .  tatctCGCCC 

3 1 6  3 4 6  
2 9  and 1 bp deletion GCAGGQgagt . . .  ggtcc�CCaCT 

18 2 1  
1 bp dupl ication GGTgSiAGTGT 

1 6 4 2  
4 bp dupl ication AGATGatctCCTGG 

1 7 7 8  1 8 1 7  
3 7  bp dup l i cation CATGTgcgct . . .  gctgaQGTGG 

No change detected 

No change detected 

No change detected 

6 9  

8 2  

1 3  
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Table 7 .  Categor i z ed teniposide- induced mutat ions . Lower case 
letters in deletion and insertion mutations represent the 
deleted and inserted sequences . Short direct repeats appearing 
at the ends of deletions and insert ions are underlined . In the 
mutant sequence , one copy of the repeat i s  reta ined ; thus , the 
actual endpoints of the delet ion or insert ion are 
indeterminate within the repeat , and are arbitrari ly shown in 
the l eftmost pos s ible position . 
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Type of Mutant Location Amino Acids 
stra in Mutation Seguence (b2 of gene) Re21acement 

4 t  A · T  C · G  TTCCC A GGGAT 2 07 SJ 

l O t  A · T  C · G  CAGGA A CCATG 1 7 7 2  T -+ P 1 3 5  

5 3 t  A · T  C · G  GAGTG A CTGGA 1 9 1 2  stop -+ C 

7 4 t  A · T  C · G  AGATG A TCTCC 1 6 4 3  D -+ A 1 2 8  

8 0t A · T  C · G  TCACC T TAAGT 2 7 7  L R 5 0  

8 1t A · T  C · G  TTAGG T GAGAT 8 2  SJ 

1 6 t  G · C  C · G  GTGAG C CTGGT 18 3 4  S -+ R 1 5 5  

1 8 t  G · C  C · G  GCAGG C GAGTG 3 1 7 SJ 

2 6t G · C  C · G  AAGTG G TTGTT 1 6 3 0  V L 1 2 4  

2 7 t  G · C  C · G  TCCTG G CCAGT 2 6 7 A P 4 7  

7 2 t  G · C  C · G  CCTCC C TAGCT 1 3 2 9  L V 7 5  

7 9 t  G · C  C · G  GGCGA G TGGCC 3 2 0  SJ 

1 4 t  G · C  T · A  TCCCC G ACTTC 5 2  D -+ Y 1 8  

2 1t G · C  T · A  TGGAG G TAAGA 1 6 6 1  SJ 

3 1t G · C  T · A  TGGTG G AGCTG 1 8 4 1 E stop 1 5 8  

7 2 t  G · C  T · A  CTCAG G AGCTG 1 3 3 8  E stop 7 8  

4 8 t  A · T  T · A  CTTCC T GTCTG 1 5 7 3  SJ 

3 2 t  A · T  G · C  TGATC T GCTGG 1 7 9 4  L P 1 4 2  

3 6t A · T  G · C  GGTGG A GCTGA 1 8 4 2  E G 1 5 8  

4 2 t  A · T  G · C  GCCCC T CCTGA 2 2 3  L P 3 2  

4 5t A · T  G · C  CGAGT A TGGCA 1 4 2 0  Y C 1 0 5  

5 4 t  A · T  G · C  ACTCC A GGGGA 1 3 0 5  R G 6 7  

7 5t A · T  G · C  GAAGC T AGGAT 1 8 7 2  L P 1 6 8  

9 2 t  G · C  A · T  CTGAG G TGGTG 1 8 1 7  V M 1 5 0  

6 8 t  G · C  A · T  TTAAG G GCAGA 1 8 5 9  G S 1 6 4  
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2 3 2  
3 8t 1 bp delet ion AAGGAcCCCGC 

1 8 7 8  
3 3 t 2 bp deletion GGATCagTACCA 

1 6 4 4  
1 0 1t 3 bp deletion ATGATctcCTGGC 

2 9 4  
2 2 t  4 bp deletion TGGCGgcaaQATCG 

2 7 3  
8 3 t  4 bp deletion CAGTCacctTAAGT 

1 8 0 1  
3 t  6 bp deletion TGGGCgggctaCAGGC 

1 8 7 7  
7 6t 6 bp deletion AGGATcagtacCATTC 

1 5 8 5  
5 2 t  7 bp deletion GGCTGaactagaAATCC 

1 2 9 4  
2 4 t  8 bp deletion ACAGGCctagactCCAGG 

1 8 7 5  
5 5 t  9 bp deletion CTAGGatcagtaccATTCTTC 

1 8 6 3  
3 3 t 1 0  bp deletion GCAGAg£gaagctagGATCAGT 

2 6 9  
7 3 t  1 0  bp deletion TGGCCagtcaccttaAGTCcA 

2 7 7  
9 6t 12 bp deletion CACCT�aagtccacgcaTGGCG 

1 5 8 4  
7 1t 14 bp delet ion AGGCT�ctagaaatccaGAAAGAC 

1 3 8 7  
1 3 t  1 5  bp deletion CCAGG£cccacagtgtcagc�TCCT 

1 6 5 0  
2 9 t  1 6  bp deletion TCCTGgccactggaggtaagaGCCACT 

1 3 3 9  1 3 5 8  
4 9 t  1 8  bp deletion CAGGA�gg . . .  tgtgtGCTCA 

17 3 9  
2 5t 2 1  bp deletion GAGT�gcagc • . .  cgcaTCCGCA 
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5 6t 3 6  bp deletion 

1 2 t  4 6  b p  deletion 

1 8 7 4  1 9 0 7  
GCTAG�tca . . .  tgagtGACTGGA 

7 2  1 1 9  
GCGTG£tg . . .  ttcCTGGGCTC 

4 4 t  About 2 2  bp deletion in exon 5 

l lt 1 bp dup l ication 

15t 1 bp dupl ication 

3 9 t  2 bp dupl ication 

9 1t 2 bp dup l i cation 

5t 4 bp dup l ication 

1 6 5 5  
GCCACtGGAG 

1 6 5 5  
GCCACtGGAG 

1 7 7 8  
CATGTgcGCTGCCT 

1 4 1 1  
TATGCtcTCGAG 

1 5 9 5  
GAAATccagAAAGA 

1 3 6 0  
2 3 t  4 bp dupl ication GTGCT£atc�GGAA 

1 8 4 8  
2 8t 4 bp dup l i cation CTGACctcaCTTAA 

1 3 5 2  
3 4 t  4 bp dupl ication TGGGCtgtgTGCTC 

2 6 9  
3 7 t  1 0  bp dup l ication GCCagtcaccttaAGTCCA 

2 1 6  2 5 8  

7 3  

1t 41 bp dup l ication TATCTcgcccctcctg . . .  atcCGCCTCCTG 

9 0t 8 5  bp complex dup l ication in exon4 

3 5t 3 bp insertion 

3 3 t  6 bp insertion 

1 8 5 7  
CTTAAgtt�GGCA 

1 9 0 0  
TCCTGcaatgaCAATATGA 

4 0t About 1 9 0  bp insert ion in exon 3 ,  4 ,  5 

3 0t About 2 9 0  bp insert ion in exon 5 

9 8 t  About 3 3 0  bp insertion in exon 5 
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Tab l e  8 .  spectrum of Spontaneous Mutations 
at the aprt Locus 

Type of Mutation Number % 

Trans itions : 
G ' C  A ' T  1 0  2 3 . 8  
A ' T  -+ G ' C  4 9 . 5  

Transvers ions : 
A ' T  e ' G  7 1 6 . 7  
G ' C  e ' G  3 7 . 1  
G ' C  T ' A  2 4 . 8  
A ' T  -+ T ' A 1 2 . 4  

Sma l l  Deletions : 9 2 1 . 4  

Insertions : 3 7 . 1  

No Change : 3 7 . 1  

Tota l : 4 2  1 0 0  

7 4  
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Tab l e  9 .  

or 

Spectrum of Tenipos ide-Induced Mutations 
at the aprt Locus 

Type of Mutat ion Number % 

Trans itions : 
A · T  G · C  6 8 . 8  
G · C  -+ A · T  2 2 . 9  

Transversions : 
A · T  e · G  6 8 . 8  
G · C  e · G  6 8 . 8  
G · C  T · A  4 5 . 9  
A · T  T · A  1 1 . 5  

Sma l l  Deletions : 2 0  2 9 . 4  

Insert ions : 1 6  2 3 . 5  

Large Deletions 
Rearrangements :  7 1 0 . 3  

Tota l : 6 8  1 0 0  

7 5  
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F igure 5 .  Di stribut ions of amino acid rep lacements resulting 
from base sUbstitution mutations at the aprt gene . The amino 
acid displacements resulting from spontaneous mutations 
labe led above the APRT sequence were reported previous ly by 
other investigators ( de Boer and G l i ckman , 1 9 9 1 ) . The amino 
acid rep lacements resulting from spontaneous ( lower case 
letters ) and teniposide- induced mutations labeled below the 
APRT sequence were results from th is study . 
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F igure 6 .  Regions of dyad symmetry at the aprt locus where 
secondary structures could be formed . The upper hair pin 
structure i s  in exon 3 and the lower ones are in exon 5 .  
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d i f f erent from that of spontaneous mutations . S i xty-three per 

cent of the mutations are deletions , insertions and 

rearrangements of different s i z es . Tenipos ide- induced sma l l  

delet ions are s imilar in nature t o  the deletions formed 

spontaneously . The s i z es of these sma l l  deletions are spread 

evenly between 1 and around 20 base pairs with the exception 

of  two deletions of 36 and 46 base pairs . The presence of  

short direct repeats at the ends of the deletions i s  a l so 

characteristic of this group . There is a c luster of 4 

deletions at exon 5 where the sequence is rich in short direct 

repeats and long stretch of dyad symmetry ( Figure 6 ) . These 

deletions (mutants 3 3 t ,  55t , 5 6t ,  7 6t )  beg in between base 

pairs 1 8 6 5  to 18 7 9 , which is around the base of a putative 

stem- loop structure . 

Over two thirds of the tenipos ide- induced insertions are 

dupl i cations and most of them are 4 base pairs or less . The 

insertions are e ither as sma l l  as 3 and 6 base pairs or as 

large as about 190 to 3 3 0  base pairs . The s i z e s  of the three 

large insertions were est imated on agarose gel s ince no 

sequence data are ava i lable . 

The composition of teniposide- induced base subst itut ions 

is somewhat different from that of spontaneous substitutions . 

Transvers ions were over two t imes more frequent than 

transitions and G · C  A · T  transitions were much less 

preva l ent . However , s imilar to the spontaneous ones , 

tenipos ide- induced base sUbst itut ions were rather evenly 

d istr ibuted throughout the coding sequences and sp l ice 
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j unctions o f  the aprt gene ( F igure 5 ) . 

Southern Blot Ana lys i s  of Large Scale Mutations 

Among 6 8  tenipos ide- induced mutations , 7 of them have at 

least one exon which f a i l ed to be amp l i f ied by PCR . These 

mutations were examined by combined PCR and Southern blot 

analys i s . The observed abnorma l ities are l i sted in Tabl e  � O . 

Restriction endonuc leases Bam HI and Pst I were used to 

d igest mutant DNA ( p lease refer to Figure 2 for restr iction 

s ites ) . After DNA fract ionat ion by agarose gel electrophoresis 

and Southern transfer , the DNA was hybridi z ed with a 

homogeneously 32p labe led 3 . 8  kb Bam HI fragment of the plasmid 

pHaprt . Wild type DNA digested with Bam HI showed a 3 . 8  kb 

band which conta ins the ent ire coding sequences of the aprt 

gene ( Figure 7 ) . Pst I cuts the aprt gene into 2 segments . A 

3 . 8  kb band contains exons � ,  2 and 3 and a 2 . 0  kb band 

contains exons 4 and 5 ( Figure 8 ) . Changes in banding patterns 

provided clues for determin ing the nature and s i z e  of  a 

mutat ion . Large deletions or rearrangements were indicated in 

these mutations ( Table � O ) . 

Mutants 6t and at seem to have s imi lar a lterat ions . Both 

have fa int or miss ing PCR products for exons � and 2 which 

loca l i z ed the a lterat ions in th i s  region of the gene . 

Displacements of 3 . 8  kb Pst I bands by sma l l er bands indicated 

large delet ions . The fact that the 3 . 8  kb Bam HI  bands are 

displaced by larger bands suggested that the large deletions 
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Table 1 0 . PCR and Southern Blot Ana lys is of Large Deletions and Rearrangements 

Southern Blot Analys is 
PCR 

:train s Ana lys is Bam HI s ite Pst I s ite Probable Lesion 

6t Weak exon 1 - 3 . 8  kb band - 3 . 8  kb band Deletion/ rearrangement 
no exon 2 + 3 . 8 5 kb band + 1 . 4  kb band involving exons 1 and 2 

8t Weak exons 1 - 3 . 8  kb band - 3 . 8  kb band Deletion/ rearrangement 
and 2 + 6 . 8  kb band + 1 .  5 kb band invo lving exons 1 and 2 

2 0t No exons 3 ,  - 3 . 8  kb band - both bands About 7 5 0  bp deletion 
4 and 5 + 3 . 0 5 kb band + 5 . 2  kb band at exons 3 ,  4 and 5 

4 6t No exons 3 ,  4 - 3 . 8  kb band - both bands Deletion of most or a l l  
weak exons 1 ,  of the gene 
2 and 5 

S It No exon 4 - 3 . 8  kb band + 2 . 3  kb band Deletion/rearrangement 
+ 2 . 8  kb band invo lving exon 4 

7 0t No exons 3 ,  4 - 3 . 8  kb band - 3 . 8  kb band Deletion/ rearrangement 
weak exons 1 ,  + 3 . 3 5 kb band invo lving most or a l l  
2 and 5 of the gene 

7 7 t  N o  exon 5 - 3 . 8  kb band - 2 . 2  kb band Deletion/ rearrangement 
+ 4 . 1  kb band + 6 . 0  kb band involving exon 5 

Symbols - and + represent loss and gain , respectively . 

(» 
l\J 



www.manaraa.com

8 3  

F igure 7 .  Southern blots o f  DNAs digested with the restr iction 
endonuclease Bam HI . Arrows indicate bands of d i fferent s i z e s  
in kb . Lane c :  w i l d  type genomic DNA . Lane M :  3 . 8  k b  aprt 
fragment marker . Due to the differences in the amount of DNA 
loaded on the agarose gel , the marker fragments migrated 
s l ower than genomic DNAs of the same s i z e . 
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F igure 8 .  Southern blots of DNAs digested with the 
restriction endonuclease Pst I .  Arrows indicate bands of 
d i f f erent s i z es in kb . Lane c :  wild type DNA . The other lanes 
with d i f f erent numbers represent the tenipos ide- induced 
mutants of the same number . 
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might have e l iminated the upstream Bam HI s ite . The peR and 

S outhern blot results of mutant 20 are consistent and c l early 

indicate a deletion at exons 3 ,  4 and 5 of  about 7 5 0  base 

pairs including the internal Pst I s ite . Mutant 4 6t has a lmost 

everything miss ing except for some faint peR products o f  exons 

1 ,  2 and 5 .  Thi s  could have resulted from deletion of most or 

a l l  of  the gene . However , s ince some of the peR products were 

visible , although barely detected , it could a l s o  be 

interpreted as a bad preparation of  cel lular DNA which 

prevented detection of the mutat ion . Mutant 51t has a miss ing 

peR product when exons 3 ,  4 and 5 were amp l i f ied together . But 

when they were amp l i f ied separate ly , only exon 4 was miss ing . 

Displacement of 3 . 8  kb Bam HI fragment by a 2 . 8  kb fragment 

made the mutat ion seem l ike a 1 kb deletion at exon 4 .  

However , the s i z e  of the entire fragment of exons 3 ,  4 and 5 

i s  only about 7 0 0  base pairs . In add it ion , the extra 2 . 3  kb 

band on the Pst I blot is also d i f f icult to explain in terms 

of a s imple deletion . A rearrangement of the gene structure 

involving exon 4 ,  for example , a very large insertion in thi s  

exon , is  more l ikely t o  b e  the cause . Mutant 7 0t h a s  a n  

ambiguity s imilar t o  that of  mutant 4 6t .  It could e ither be a 

deletion of most or a l l  of the gene or bad preparat ion of the 

cel lular DNA . The alterat ion of mutant 7 7 t  is apparently 

located toward the end of the gene . It is  l ikely to be a large 

delet i on or rearrangement invo lving exon 5 and the downstream 

Bam HI and Pst I restr ict ion s ites . 

Although most of these mutat ions were not ana lyzed in 
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deta i l , i t  is certain that such large sca le a lterat ions only 

occurred among teniposide- induced mutat ions . 

In vi tro DNA Cleavage 

Drug- induced mutations are probably the result of  

incorrect repair following DNA damages . To try to understand 

the sequence speci f i c ity of drug- induced DNA les ions and the 

cel lular repair mechani sms , it was hoped that with the same 

spec i f icity , DNA strand breaks could be generated in vi tro in 

the presence of topo isomerase II and tenipos ide . 

PCR products of exons 2 ,  3 ,  4 and 5 were 5 ' -end label ed 

with 32p separately in upper and lower strands so that a total  

of  8 substrates were prepared . s ince few deletion/ insertion 

mutat ions were found at exon 1 ,  thi s  fragment was not prepared 

for in vi tro cleavage reaction . 

We f irst attempted to use a crude nuclear extract 

prepared from the CHO-D4 2 2  ce l l  l ine to cata lyze in vi tro 

c leavage reaction . Although DNA c leavage was achieved at exon 

4 as is shown in Figure 9 ,  at other exons , s igni f icant 

c leavage was either not clearly observed or accompanied by a 

high nonspecific background c leavage . Pur i f ied topo isomerase 

II o f  mouse L12 1 0  ce l l s , wh ich was provided by Dr . Y .  Pommier , 

exhibited higher activity and spec i f i c ity in the DNA c leavage 

react ion . Pictures shown in Figures 1 0 , 1 1 , 12  and 13 were 

results of  in vitro c leavage reaction cata ly z ed by pur i f ied 

mouse topoi somerase I I . 
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Figure 9 .  In vi tro DNA c leavage mediated by crude nuc lear 
extract in the lower strand of exon 4 of the aprt gene . Lanes 
1 ,  2 ,  3 and 4 :  cleavage reactions in the presence of 10 �M 
teniposide and increas ing amount of extract ( 0 . 5  - 3 � l ) . Lane 
T :  reaction with 10 �M teniposide only . Lanes 5 and 6 :  
reactions with extract only ( 1  and 2 � l ) . Lane C :  reaction 
with substrate only (without teniposide and extract ) . 
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1 2 3 4 T 5 6 C  
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F igure 1 0 . In vi tro DNA cleavage i n  the upper ( le f t )  and 
lower ( right ) strands of exon 2 of the aprt gene . Lane M :  
pur ine markers . Lane 1 :  cleavage reaction with 1 0  �M 
tenipos ide and 2 �l pur i f ied topoisomerase I I . Lane 2 :  
reaction with 1 0  �M teniposide only . Lane 3 :  react ion with 2 
� l  topoisomerase I I  only . Solid and open triang les indicate 
strong and weak cleavage s ites that were arbitrarily def ined . 
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F igure 1 1 . In vi tro DNA cleavage i n  the upper ( left)  and 
lower ( r ight ) strands of exon 3 of the aprt gene . Lane M :  
pur ine markers . Lane 1 :  c leavage reaction with 1 0  �M 
teniposide and 2 �l pur i f ied topoi somerase I I . Lane 2 :  
react ion with 1 0  �M teniposide only . Lane 3 :  reaction with 2 
� l  topoisomerase I I  only . Solid and open triangles indicate 
strong and weak cleavage s ites that were arbitrar i ly def ined . 
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Figure 1 2 . In vi tro DNA cleavage i n  the upper ( left ) and 
lower ( r ight ) strand of exon 4 of the aprt gene . Lane M :  
pur ine markers . Lane 1 :  cleavage reaction with 1 0  �M 
teniposide and 2 �l purif ied topo isomerase I I . Lane 2 :  
reaction with 1 0  �M teniposide only . Lane 3 :  reaction with 2 
� l  topoisomerase I I  only . Solid and open triangles indicate 
strong and weak cleavage s ites that were arbitrar i ly def ined . 
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F igure 1 3 . In vi tro DNA cleavage i n  the upper ( left ) and 
lower ( r ight ) strands of exon 5 of the aprt gene . Lane M :  
pur ine markers . Lane 1 :  cleavage reaction with 1 0  �M 
tenipos ide and 2 �l pur i f ied topo isomerase I I . Lane 2 :  
reaction with 1 0  �M teniposide only . Lane 3 :  reaction with 2 
� l  topo isomerase I I  only . Solid and open triangles indicate 
strong and weak cleavage s ites that were arbitrar i ly defined . 
The l etter N indicates the nonspec i f i c  cleavage . 
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Each labe led substrate was incubated wi th 2 

9 9  

/.1 1  

topoisomerase I I  and 1 0  /.1 M  tenipos ide which stab i l i z ed the 

DNA-topo isomerase II complexes . Subsequent treatment with SDS 

resulted in DNA strand breaks and the broken fragments were 

visua l i z ed by po lyacrylamide-urea gel e lectrophores i s  ( F igures 

1 0 , 1 1 ,  12 and 1 3 ) . Purine markers were run a long with the 

sampl e  DNAs so that the breakage s ites could be located . S ince 

a DNA fragment cut by topoisomerase II has a hydroxyl group at 

the 3 '  end , whi le the correspond ing purine marker has a 

negat ively charged phosphate at the 3 '  end , the topo isomerase 

II c leaved fragment migrates slower than the marker fragment 

of the same length on the sequencing gel . The shorter the 

fragment , the bigger the d i f ference is . For example , a 7 0  base 

pair topo isomerase I I  cleaved fragment appear ing on the gel is 

retarded from the corresponding marker fragment by a d istance 

equivalent one ha l f  of a base , and a 30 base pair fragment is 

retarded by a distance of a comp lete base . Th is difference was 

ver i f ied by treating the pur ine marker with the 3 '  phosphatase 

act i vi ty of T4 po lynuc leotide kinase to remove its 3 '  end 

phosphate ; however , s ince th is remova l seldom went to 

comp letion , it was not rout inely emp loyed . 

Based on the intens ity of the bands , the breakage po ints 

were arbitrar i ly classif ied into strong and weak s ites . A 

total of 3 1  strong s ites and 2 5  weak s ites were detected as 

indicated by s o l id and open triangles in both the gel p i ctures 

and F igures 14 , 1 5 , 16 and 17 , in wh ich sequences of  exons 2 ,  

3 ,  4 and 5 were shown . There are several areas in the gel ( the 
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F igure l 4 . Map of  teniposide- induced in vitro topo isomerase 
I I  c leavage s ites and deletion/ insertion mutations at exon 2 
of the aprt gene . Open and solid triangles indicate weak and 
strong c leavage s ites that were arbitrar i ly def ined . 
continuous and broken l ines represent deletions and 
dup l ications , respectively . S ince short direct repeats appear 
at nearly a l l  of the deletion and dup l ication termini and one 
of the repeated sequences is reta ined , the endpoints are 
indeterminate within the repeats and both of them are shown 
with extended l ines . 
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1 0 2  

F igure 1 5 . Map of teniposide- induced i n  vi tro topo isomerase 
II c leavage s ites and deletion/ insert ion mutations at exon 3 
of the aprt gene . Open and solid triangles indicate weak and 
strong cleavage s ites that were arbitrar i ly def ined . 
cont inuous and broken l ines represent deletions and 
dup l i cations , respectively . s ince short direct repeats appear 
at near ly a l l  of the deletion and dupl ication termini and one 
of the repeated sequences is reta ined , the endpo ints are 
indeterminate within the repeats and both of them are shown 
with extended l ines . 
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F igure 1 6 . Map of teniposide- induced i n  vi tro topoisomerase 
II c leavage s ites and deletion/ insert ion mutations at exon 4 
of the aprt gene . Open and solid triangles indicate weak and 
strong cleavage s ites that were arbitrar i ly def ined . 
cont inuous and broken l ines represent deletions and 
dup l ications , respectively . S ince short direct repeats appear 
at nearly a l l  of the deletion and dupl ication termini ,  and one 
of  the repeated sequences is retained , the endpo ints are 
indeterminate within the repeats and both of them are shown 
with extended l ines . 
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F igure 1 7 . Map of teniposide- induced i n  vi tro topoisomerase 
II cleavage s ites and deletion/ insertion mutations at exon 5 
of the aprt gene . Open and solid triangles indicate weak and 
strong cleavage s ites that were arbitrar i ly def ined . 
cont inuous and broken l ines represent deletions and 
dup l ications , respectively . s ince short direct repeats appear 
at nearly all of the deletion and dup l i cation termini , and one 
of  the repeated sequences is retained , the endpo ints are 
indeterminate within the repeats and both of them are shown 
with extended l ines . 
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f irst 2 0  nuc1eotides a t  the lower strand in exon 2 ,  the f irst 

1 4  nuc leotides at the lower strand in exon 3 and the last 14 

nucleotides at the upper strand in exon 5) where the 

background i s  too high to show DNA c leavage s ites . As a 

result , mutations within these areas (mutants It , 2 4 t , 5 6 t )  

c a n  not b e  ana lyz ed with certainty . 

In order to determine whether sequence co-spec i f i c ity 

between in vi tro c leavage s ites and putat ive init i a l  DNA 

l e s i ons is present in this study , teniposide- induced deletions 

and dup l ications were also i l lustrated in Figures 1 4 , 1 5 , 1 6  

and 1 7  by continuous and broken l ines , respect ive ly . s ince 

many of the deletions and dup l i cations have a short direct 

repeats at the ends , it was impossible to decide at which base 

pair a deletion or dupl ication began . So , extended l ines were 

drawn to inc lude both of the repeated sequences .  

Some of the mutations were clearly assoc iated with in 

vi tro cleavage s ites . However , the s ignif icance of such a 

relationship was not exclus ive and needed to be dist ingui shed 

from possible random coinc idence . Two d i f ferent ana lyses were 

done to ful f i l l  thi s  task . The bas ic assumpt ions behind these 

analyses were that teniposide mediated DNA strand breaks were 

the initial les ions and that the in vi tro c leavage s ites , to 

some extent , represent the DNA breakage po ints in the c e l l s . 

The f irst approach emphas i z ed on the relat ive association 

o f  the teniposide- induced mutat ions within the strong and weak 

s ites . As was described earl ier , the in vi tro c leavage s ites 

were arbitrar i ly classif ied into 31 strong s ites and 25 weak 
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s ites . The number of strong o r  weak s ites within and at the 

end ( s )  of each mutation sequences ( including both repeated 

s equences ) were summed and d ivided by the tota l number of  base 

pairs of a l l  the mutations ( including both repeated 

s equences ) .  The random background was determined by d ividing 

the tota l numbers of strong or weak s ites by the total number 

of base pairs in exons 2 ,  3 ,  4 and 5 .  The non-random 

background was determined by dividing the number of the strong 

or weak s ites by the tota l number of base pairs in the 

mutation-free sequences .  

Table 1 1  shows that the association between strong s ites 

and the mutant sequences is more than 2 times greater than the 

random background and 17 times greater than the non-random 

background . On the other hand , the association between the 

weak s ites and the mutant sequences is not s igni f icantly 

d i f f erent from either of the backgrounds . 

The second analys is is to compare the mutant association 

with the strong cleavage s ites between tenipos ide-induced and 

spontaneous mutations . As is shown in Table 12 , 82 % of  the 

tenipos ide- induced mutants , wh i l e  only 2 2  % of the spontaneous 

mutants that f e l l  into exons 2 ,  3 ,  4 and 5 conta in strong 

c leavage s ites . F ive of the 9 spontaneous deletion / dup l icat ion 

mutations are clustered in a region of exon 5 ( F igure 1 8 )  

where n o  double cleavage s ites are observed . 
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Table 1 1 . Association Between in vitro strong and Weak 
C leavage s ites and the Deletion / Dupl ication Sequences * 

strong s ite Weak s ite 

Mutant Sequence : 0 . 1 6 0  0 . 0 7 2  

Total Coding Sequence : 0 . 0 6 7  0 . 0 5 4  

Non-mutant Sequence : 0 . 0 0 9  0 . 0 5 2  

1 1 0  

* The i n  vi tro cleavage s ites were arbitrar i ly clas s i f ied 
into 3 1  strong s ites and 25 weak s ites . The association 
between strong or weak cleavage s ites and the mutant sequences 
were calculated by divid ing the total number of strong or weak 
s ites within and / or at the end ( s )  of the deleted and 
dup l icated sequences ( 4 9  strong s ites and 22 weak s ites ) by 
the tota l number of  base pairs in these sequences including 
repeats at the termini ( 3 0 6 base pairs ) . The random background 
was calculated by divid ing the tota l number of strong or weak 
s ites ( 3 1  strong s ites and 25 weak s ites ) by the tota l number 
of base pairs in exons 2 ,  3 ,  4 and 5 ( 4 6 3  base pairs ) . The 
non-random background was calculated by dividing the tota l 
number of strong or weak s ites within the non-mutant sequences 
( 2  strong s ites and 1 1  weak s ites ) by the tota l number of  base 
pairs in these sequences ( 2 1 2 base pairs ) . 
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Table 1 2 . Comparison of Association with strong in vitro 
C leavage s ites Between Tenipos ide-Induced and Spontaneous 
Mutant Sequences* 

Tota l mutations : 

Mutat ions associated 
with cleavage s ite : 

Tenipos ide
Induced 

2 8  

2 3  

8 2  % 

Spontaneous 

9 

2 

2 2  % 

1 1 1  

* Twenty-eight tenipos ide- induced and 9 Spontaneous deletion 
and dupl ication mutations were recovered in exons 2 ,  3 ,  4 and 
5 .  Twenty-three tenipos ide-induced , but only 2 spontaneous 
deletions / dupl icat ions are assoc iated with strong in vi tro 
c leavage site ( s ) . 
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F igure 1 8 . A cluster of spontaneous deletions and 
dup l ications at exon 5 of the aprt gene . cont inuous and broken 
l ines represent deletions and dupl ications , respectively . Open 
and s o l id triangles indicate topo isomerase I I  mediated weak 
and strong cleavage s ites that were arbitrar i ly def ined . A l l  
of the delet ions and dup l ications are framed b y  a short direct 
repeats and one of the repeated sequences is reta ined . S ince 
the endpoints are indeterminate within the repeats , both of 
them are shown with extended l ines . Region of a putative hair 
pin structure is also shown on the map . 
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DI SCUSSION 

Mutab i l ity of the aprt locus by tenipos ide 

Tenipos ide mutagenes i s  has been studied at the tk locus 

in mouse lymphoma cells  ( DeMar ini et a l . , 1 9 8 7 ) , the hgprt 

locus in CHO cel l s  ( S ingh and Gupta , 1 9 8 3 )  and the aprt locus 

in CHO-D4 2 2  cel l s . The mutagenic responses at these loci to 

tenipos ide are different by more than two orders of magnitude . 

The maximum mutation frequency at the aprt locus is about 1 0  

t imes lower than that a t  the hgprt locus and about 3 0 0  t imes 

lower than that at the tk locus . D i f ferent mutagenic responses 

at d i f ferent genet ic loci to strong clastogens has been 

not iced previous ly ( DeMarini et a l . , 1 9 8 7 ) . It had also been 

observed that in the mouse lymphoma cel l s , the ma j ority of  the 

tk- colonies formed following treatment of a strong clastogen 

such as m-AMSA were sma l l -s i z e  colonies (Moor et a l . , 1 9 8 5 ) . 

The frequency of the large tk- colonies was comparable to the 

mutation frequency at the hgprt locus ( Pommier et a l . , 1 9 8 5 ) . 

It was proposed that large colony tk mutants represent s ingl e  

gene mutations which is probably also the type of  mutation 

recovered at the hgprt locus following treatment of  a strong 

c lastogen . Sma l l  colony tk mutants , on the other hand , appear 

1 1 4  
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to result from chromosoma l events in which some o f  the 

surrounding genes that are essent i a l  for cell  growth might 

have been af fected ( Hoz ier et a l . , 1 9 8 5 ) . The heterozygous 

nature of the tk locus enabled the recovery of sma l l  colony 

mutants s ince loss of the essent i a l  genes due to the l arge 

sca l e  a lterations could be part i a l ly compensated by funct ional 

a l leles on the other copy of chromosome 1 1  (which i s  the 

chromosome bear ing the tk gene ) resulting in viable but s l owly 

growing cel l s . However , for the hemizygous hgprt locus , loss 

o f  adj acent essential genes wi l l  lead to cell death . Thi s  

hypothes i s  was strongly supported b y  the observation that in 

a mouse lymphoma c e l l  l ine in which one of the two chromosome 

11 homologues was lost , m-AMSA mutation frequency was reduced 

to the level that was observed at the hgprt locus ( Evans and 

Menc l , 1 9 8 6 ) . 

The same rationa le appears to dictate the mutabil ity of  

the aprt gene in CHO-D4 2 2  cells as wel l .  Based on Southern 

blot analys is , thi s  cell l ine carr ies a deletion of one copy 

of  the aprt gene , rendering it hemi zygous at thi s  locus 

( Na lbantoglu , et a l . , 1 9 8 3 ) . This  i s  presumably the ma in 

reason that wou ld explain the low teniposide mutation 

frequency at the aprt locus . Such results a l so supported the 

idea that teniposide is a strong clastogen . 

The hgprt gene is 4 4  kb wh ich is about 2 0 -fold larger 

than the aprt gene . Thi s  is probably one of the factors , i f  

not the only factor , which caused the 1 0 -fold d i f ference i n  

tenipos ide- induced mutation frequencies between these loci . 
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Due t o  the low level of  aprt mutation frequency , the 

recovery of aprt" mutants tends to f luctuate more between 

rep l icate culture samples . cultures with no mutant recovery 

are not uncommonly seen , which resulted in larger standard 

errors in mutagenes i s  data . On the other hand , cultures with 

very h igh mutant recovery ( for example , mutation frequencies 

around 5 0  x 1 0�) were occas iona l ly observed , and such data 

were exc luded from the data pool s ince these mutants were 

l ikely to be the progeny of preexist ing aprt- ce l l s  which 

e i ther were present in the initial inoculum or arose 

spontaneously short ly thereafter . 

The most va luable mer it of th is system is that the 

hemizygos ity and sma l l  s i z e  of the locus enabled us to 

s equence the ent ire coding region of the gene , so that the 

mutations could be revealed at the sequence leve l . The 

d i sadvantage of us ing CHO/ aprt system to study teniposide 

mutagenes i s  is that the maj ority of the mutants recovered at 

thi s  locus may not be the types of mutations induced by 

tenipos ide at other genet ic loci , most of which are more 

s imi lar to hgprt mutants in s i z e . Only 1 0  % of the mutations 

recovered in th is study were large sca le a lterat ions . However , 

s e lect ive recovery of certa in types of mutations i s  a lmost 

i nevitable in any mutagenes i s  system . Th is study opened 

another window for invest igation of tenipos ide mutagenes i s .  

Characteristics o f  Teniposide- Induced Mutat ions at the aprt 

Locus 
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Compared t o  the spontaneous mutation spectrum , tenipos ide 

induced more sma l l  deletions ( 2 9 . 4  % vs . 2 1 . 4  % ) , insertions 

( 2 3 . 5  % vs . 7 . 1  %) and fewer base sUbst itut ions ( 3 6 . 7  % vs . 

6 4 . 3  % ) . Moreover , 1 0  % of the tenipos ide- induced mutations 

appear to be large deletions and rearrangements whi l e  no such 

mutants were formed spontaneously . 

Sma l l  deletions induced by teniposide are s imilar to 

spontaneous deletions in terms of s i z e  and the presence of  

short direct repeats at the mutation termini . A s igni f icant 

increase in the number of insertions was observed in 

tenipos ide- induced mutat ions . Eleven of the 16 insert ions are 

dup l i cations and eight of them are 4 base pairs or less . F ive 

med ium to large-s i z ed insertions ( 4 1 - 3 3 0  bp ) were found and 

two of them are dupl ications . Short direct repeats are a l s o  

involved in most of  the insertions . 

Increased frequency of sma l l  deletions and insert ions in 

the presence of tenipos ide rai sed the poss ibi l ity that 

topoi somerase II may play a role in the formation of 

spontaneous deletions and insert ions , s i nce the clastogenic 

e ffect of tenipos ide i s  mediated by thi s  enzyme . Furthermore , 

the invo lvement of short direct repeats in both spontaneous 

and teniposide- induced sma l l  deletions and insertions tempted 

the thoughts that these repeated sequences might serve as some 

sort of  recognition s igna l for topo isomerase II bind ing to 

DNA . The maj ority of the spontaneous deletions and insertions 

that f e l l  into exons 2 ,  3 ,  4 and 5 do not associate with 

strong in vi tro cleavage s ites ( Figure 1 8 ) , which is in sharp 
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contrast t o  the drug- induced sma l l  deletions and insertions . 

However , this result st i l l  does not address the question o f  

whether the increased frequenc ies of  sma l l  deletion and 

insertions in the presence of tenipos ide is due to the 

enhancement of a preexi st ing mechanism for the formation of 

spontaneous deletions and insert ions , s ince the drug

stimulated cleavage s ites may not be the same as s ites of 

topo isomerase-mediated c leavage in the untreated cel l s . 

Despite the unfavorable se lection against large deletions 

and rearrangements in CHO / aprt system , several mutants of  thi s  

type were recovered . S ince n o  such mutants were found in the 

spontaneous group , it is almost certa in that this type of 

mutat ion represents solely tenipos ide- induced DNA alterat ions . 

It would be more va luable if these mutants were ana lyz ed at 

the sequence leve l ,  s ince they probably reflect more closely 

the type of DNA damage and repa ir events which occur in c e l l s  

f o l l owing tenipos ide exposure . 

A predominance of G · C  � A · T  trans itions in spontaneous 

base sUbstitut ions was observed previously ( Phear et a 1 . ,  

1 9 8 9 ; de Jong et a l . , 1 9 8 8 )  and i s  also true in thi s  study . 

But thi s  type of base sUbst itut ion is much less preva l ent 

among teniposide- induced substitut ions . Instead , transvers ions 

occurred more frequent ly than trans itions . Thi s  may be due to 

the observed shift of frequency from G · C  � A · T  to G · C  � C · G  

and G · C  � T · A in the presence of tenipos ide . The preval ence of 

G · C  � A · T  trans it ions in spontaneous base sUbstitution was 

suggested to ref lect cytos ine deaminat ion ( de Jong et a l . , 
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1 9 8 8 ) . Enhancement of other types of base changes may be 

responsible for the shift of  the base sUbst itut ion spectrum . 

The distribution of tenipos ide- induced base sUbstitut ions 

i s  not not iceably d i fferent from that of  spontaneous base 

sUbstitutions . In fact , several of  the drug- induced 

sUbstitutions f e l l  at the same base pairs that were found in 

the spontaneous group . Tenipos ide- induced base sUbstitut ions 

did not appear to occur preferent i a l ly at s ites of  drug

st imulated cleavage , and the mechanism of the ir format ion i s  

unknown . One possibil ity is drug-induced interference with 

repair of endogenous DNA base les ions . Most of the drug

induced base sUbstitut ions targeted amino acids that are also 

targeted by spontaneous base sUbst itutions . However , several 

amino acids alterat ions that have never been reported before 

were found in both the spontaneous and the tenipos ide- induced 

group . 

Correspondence Between in vi tro Cleavage s ites and the 

Ten ipos ide-Induced Mutant Seguences 

By means of the two analyses shown in Tables 11 and 1 2 , 

the relationship between teniposide- induced mutations and the 

in vi tro cleavage s ites was expressed in a quant itat ive way 

and a s igni f icant correspondence was indicated . The 

association between strong cleavage s ites and the mutant 

sequences is more than 2 times greater than the random 

background and 17 t imes greater than the non-random background 
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( Table 1 1 ) . It suggests that the strong s ites are more l ikely 

to be the initial s ites of DNA damage , whereas the weak s ites 

may only play a minor role , i f  any , in the format ion of  the 

mutat ions . Twenty-three of the 2 8  tenipos ide- i nduced 

deletion / dupl icat ion mutations were found to assoc iate with 

strong in vi tro cleavage s ite ( s )  ( Table 1 2 ) and most of  these 

s ites are 4 base staggered double strand cleavage s ites . 

These data imply that the in vi tro c leavage s ites may , to 

some extent , represent the s ites of initial DNA les ions 

occurring in the ce l l s  following teniposide exposure , and a 

s igni f i cant portion of tenipos ide-induced sma l l  deletions and 

dup l i cations may have resulted from these DNA double strand 

breaks that were mediated by topo isomerase I I . A previous 

study which was done by Ripley et a l  ( 1 9 8 8 )  is  clearly in 

f avor of  this presumpt ion . In the ir work , frameshift hotspot 

s ites for acridine- induced mutations in bacter iophage T4 were 

found to correspond to two very strong in vi tro topo isomerase 

I I  cleavage s ites . This observation not only imp l i cated the 

acridine- induced , topo isomerase II mediated DNA cleavages as 

being respons ible for the acridine-induced frameshift 

mutat ions , but also demonstrated that the topoisomerase I I  

mediated i n  vi vo cleavages were able t o  b e  reproduced i n  a 

c e l l  free system with the same sequence spec i f i c ity . 

However , recent observations have indicated that the 

pattern of  topo isomerase II mediated DNA cleavage in naked DNA 

is substant i a l ly different from that shown to occur in the 

drosoph i l a  KC cells ( Udvardy and Sched l , 1 9 9 1 ) . Spec i f i ca l ly ,  
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c leavage s ites within nuc leosome core particles are suppressed 

whi l e  those in the internucleosome l i nker or in other 

nuc leosome free areas are enhanced . As a result , the observed 

relationship between tenipos ide- induced mutations and in vi tro 

c leavage s ites may only part i a l ly ref l ect what had happened in 

the c e l l s . 

Mode l s  for poss ible Cel lular Mutationa l Events 

The topo isomerase II mediated DNA double strand break has 

been character i z ed as two s ingle strand cleavages on oppos ite 

strands , separated by four base pairs , result ing in a 5 , _  

overhang (Mul ler et a l . ,  1 9 8 8 ) . In thi s  study , we observed 3 1  

strong in vi tro c leavage s ites in exons 2 ,  3 ,  4 and 5 ,  among 

which 22 s ites are positioned in such a way that double strand 

c leavage can occur . All of the 11 putat ive double c leavage 

s ites are associated with at least one teniposide- induced 

deletion/dup l icat ion mutat ion . Two of these s ites are each 

associated with four deletions and dupl ications . Thi s  unusua l 

observation strongly suggests that topo isomerase I I  mediated 

DNA strand breaks , espec i a l ly the double strand breaks , were 

the initial les ions which resulted in tenipos ide- induced 

mutations . This presumption enables us to try to address the 

question as how these mutat ions might be produced , wh ich could 

lead to a better understand ing of the mechan i sms of  DNA double 

strand break repair . 

The format ion of the mutations presumably occurred dur ing 
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certain genetic activities such as repl ication , transcription 

and chromosoma l segregat ion when topoisomerase II is  requ ired . 

The mutations are probably e ither the outcomes of incorrect 

DNA strand break repa ir or rep l i cation errors due to the 

interference with norma l DNA synthes i s  by the drug-stab i l i z ed 

DNA-topo isomerase I I  complexes . By examining the pos itions of  

the double cleavage s ites in the mutant sequences ,  no  

con s istent pattern was found which could explain the formation 

of  all the mutat ions . However , severa l mode ls are presented 

below ,  each of which describes possible events occurring in 

the c e l l s  fol lowing tenipos ide exposure wh ich could have 

resulted in observed mutat ions . 

( 1 )  Ripley ' s  Model : 

Ripley et al ( 1 9 8 8 )  proposed that a topo isomerase I I  

mediated DNA strand break would expose a free 3 '  hydroxyl end 

which could be acted on by two dif ferent kind of enzymes : a 

3 ' -exonuclease could tr im off a few nuc leotides and cova lent 

rej o ining of the ends cou ld form a deletion ; DNA polymerase 

could fill in the s ingle stranded 5 '  overhang and subsequent 

rej o ining of the ends cou ld form a dup l i cation . Five mutants 

in thi s  study (mutants 3 4 t , 9 1t ,  2 8 t ,  2 2 t ,  8 3 t )  could be 

exp l a i ned by this model ( F igure 1 9 ) . 

( 2 )  Nonhomo logous Recombination Model : 

Nonhomologous recombination has been described by many 

i nvestigators as an commonly seen mechan ism of doubl e  strand 
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F igure 1 9 . Ripley ' s  Mode l . 1 .  In vi tro tenipos ide
st imulated , topo isomerase I I -mediated double cleavage s ite . 2 .  
A strand displacement reaction is cata lyzed by DNA polymerase . 
3 .  A dup l i cation is formed by rej oin ing of the ends . 
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break repa ir i n  mamma l ian cel l s . When l i near DNA molecules 

with d i fferent ends were introduced into monkey cel l s , the 

ends were j o ined with l imited sequence mod i f i cations despite 

the fact that l ittl e  or no homo logy was present ( Roth and 

W i lson , 1 9 8 6 ) . Figure 20 i l lustrates that one or both ends of 

a double strand break could be processed by exonucleases unt i l  

some sequence homo logy is exposed . The cohes ive ends are then 

rej o ined and the gaps are f i l led .  The observed short d irect 

repeats which appear at nearly all of the deletion termini may 

be the outcome of thi s  sequence homo logy searching process .  

But whether or not thi s  short sequence homo logy i s  required 

for thi s  type of double strand break repa ir or i f  there is 

some other mechanism invo lved is  not clear at th is  po int . 

Twelve mutants ( 7 3 t ,  4 9t ,  7 1t ,  5 2 t , 1 0 1t ,  2 9t ,  5 6t ,  7 6t ,  5 5 t , 

9 6 t ,  3 t  and 2 2 t )  could be expla ined by th i s  model . Among them , 

mutant 2 2 t could a l s o  be expla ined by Ripley ' s  mode l . Mutant 

2 4 t  is located in the region where no lower strand c leavage 

s ites could be recogn i z ed . The fact that one strong c leavage 

s ite is present at the upper strand makes it pos s ible that 

mutant 2 4 t  could also be expla ined by th is model . The most 

attractive feature of the nonhomo logous recombinat ion mode l i s  

that it can account for both the predominance of  strong 

c leavage s ites within the deleted sequences ,  and the l ack of 

any con s istent posit ion ing of these c leavage s ites with 

respect to the delet ion termin i .  

( 3 )  Rep l ication Blockage and S l ippage Mode l : 
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F igure 2 0 .  Nonhomo logous Recombination Model . 1 .  In vi tro 
doubl e  c leavage si tes . 2 .  Both 3 I ends are acted on by 
exonucleases to expose short sequence homology ( under l ined 
sequence ) .  3 .  The ends are rej o ined to form a deletion . 
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Four of the 1 1  dupl ications ( 1t ,  3 7 t ,  2 3 t ,  3 9t )  a r e  not 

a ssociated with in vi tro cleavage s ites in the way that the 

formation of these mutants could be expla ined by Ripley ' s  

mode l . These dup l ications are located at various d istances 

from double c leavage s ites . Short d irect repeats are a l s o  

present a t  the termini of these dup l ications and o n e  o f  the 

repeated sequences is dupl icated . These mutat ions could be DNA 

rep l i cation errors . Figure 2 1  i l lustrates that when the DNA 

repl ication complex is progress ing along the leading strand 

and reaches the drug-stab i l i z ed topo isomerase I I  intermediate , 

the s imp le phys ical blockage may cause DNA po lymerase to s l ip 

back . The short sequence of a direct repeat in the newly 

synthes i z ed region could base pair with comp l imentary sequence 

at the opposite strand whi l e  the rest of it loops out . When 

the blockage is released , th is part of the sequence i s  

synthes i z ed aga in and a dup l ication i s  formed . 

( 4 )  Subunit Exchange Model : 

This mode l was f irst suggested by Ikeda ( 1 9 8 6 )  for a 

unique kind of DNA gyrase mediated recombinat ion . It was then 

genera l i z ed as i l lustrated in Figure 2 2 : DNA topo isomerase I I  

molecules bind t o  DNAs t o  form comp lexes , two such comp l exes 

associate with each other and lead to the exchange of  DNA 

strands through the exchange of topo isomerase II sUbunits . But 

none of the mutants found in this study could be exp l a ined by 

thi s  mode l . 

Among a l l  17 deletions and 1 1  dupl ications examined , 8 
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Figure 2 1 .  Blockage and S l ippage Model . 1 .  DNA rep l i cation 
Complex is  progress ing along the leading strand and reaches 
the drug stab i l i z ed topoi somerase II intermediate . 2 .  The 
physical blockage causes the repl ication comp lex to s l ip back 
and the newly synthes i z ed sequence loops out . 3 .  A dup l i cation 
i s  formed . 



www.manaraa.com

Blockage and S l ippage Model  

C C G G A A G C G  
A

T .- C G C  
1 .  G C T �'!!!,t G C T C Polymerase 

C G A  ' " C G A G T A 

2 .  

3 .  

Topo I I  G G C C T T C G C 

T C A T C C G G A A G C G  •........ . . . ....... . ....... . . C ; . G C T T C G C  
G C T ···· ······· ······· · · N G T C 
C G A .·.· • • ·.·• ·· · ·

·.·•·· ·

·.·.

· •·.·• · C A G G 
G A G T A G G C C T T C G C  

G C T G T G T G C T C A T C C G G A A G C G  
C G A C A C A C G A  G G C C T T C G C  G A 

T T 
A G  G 

Mutant 23 t 

1 3 0  



www.manaraa.com

1 3 1 

Figure 2 2 . Subunit Exchange Mode l . 1 .  DNA-topo isomerase I I  
comp l exes . 2 .  Two comp lexes assoc iate with each other and l ead 
to the exchange of DNA strands through the exchange of  
topo isomerase I I  sUbunits . 3 .  A deletion i s  formed . 
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mutants ( 3 8t , 5t , 11t , 15t , 1 3 t , 3 3 t ,  9 0t )  d o  not seem t o  f it 

any of the above mode l s . At this point , there is no good 

exp lanation as how these mutations might be formed . Mutants 

3 8 t ,  1 1t and 15t are s ingle base pair deletion or dup l i cations 

which may not be induced by tenipos ide , s ince these type s  of  

mutations could also be formed spontaneous ly . Mutant 33  has a 

comp l icated a lterat ion in which two deletions and one 

insertion were found near the base of  a putat ive stem loop 

structure at exon 5 .  The delet ions cover several d irect and 

inverted repeats which may play a role in the generat ion of 

the mutat ions . Mutant 9 0t carr ies multiple dup l ication/ 

insertion mutat ions ( Figure 2 3 )  wh ich start from the upstream 

splice j unction and extend into intron 4 .  Such a comp lex form 

of  mutation has never been reported before and may ref l ect a 

unique character istic of the repa ir of topo isomerase I I  

mediated double strand breaks . 

This study provided l ittle clue for the cause of DNA 

damages resulting in spontaneous deletions and dup l i cations . 

F ive of the spontaneous deletions and dupl ications are 

c lustered around a putat ive hair pin structure in exon 5 

( Figure 18 ) . Thi s  is consi stent with what was reported 

previously by other invest igators that spontaneous deletions 

occur more frequent ly around hair pin structures ( Phear et 

a l . , 1 9 8 9 ) . Although the cause of initial DNA damage might be 

dist inct , the presence of short direct repeats in both 

spontaneous and teniposide- induced mutations suggests a 

s imi lar mechanism of mutant format ion . 
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Impl ications for C l inical Cancer Chemotherapy 

Teniposide is current ly used in the c l inic as an 

e f f ecti ve cancer chemotherapeut ic agent . However , a unique 

type of acute monocyt ic leukemia has been identif ied in recent 

years among long term cancer survivors who were treated with 

epipodophyllotoxins or certa in other topo isomerase I I  

i nhibitors . Thi s  type of secondary leukemia are often found to 

have trans locations invo lving chromosome 1 1q2 3 . It i s  l ikely 

that certa in spec i f i c  genet ic events were induced by the drug , 

which could trigger the process of transformat ion . However , 

most of the genet ic events in secondary cancers are not known 

at the present time . 

In this study , we ana lyz ed the tenipos ide- induced 

mutat ions at the DNA sequence leve l in a mamma lian mutagene s i s  

model system . The observed evidence suggests that the maj ority 

of tenipos ide- induced mutat ions are probably resulted from 

c leavable complex , the DNA les ion which presumably cause ce l l  

death . Therefore n o  immediate hope of separat ing the two 

e f f ects in one drug has emerged from th i s  study . 

However , the work does show that teniposide can induce 

mutations other than large delet ions . As the genetic events in 

secondary cancers are di scovered , such as wh ich type of 

mutation is important in the deve lopment of secondary cancers , 

our results compr ise a useful data base for compar ison to 

determine whether tenipos ide was directly invo lved . 

The exact relation between cl eavable comp lex formation 
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and either cell death o r  mutagenes i s  i s  sti l l  not certa i n ,  nor 

is it known why some cleavable comp lexes produce actua l 

chromosome breaks in the ce l l ,  or whether this breakage i s  

important in cell  death . Thus , it i s  possible that c leavable 

comp l exes with certain drugs may be less l ikely to produce 

frank DNA double strand breaks than those with other drugs . 

Whether this would increase or decrease mutagenes i s  relative 

to c e l l  k i l l  cannot be determined unt i l  mechanisms of  both 

c e l l  death and mutagenes i s  by these drugs are e lucidated in 

more deta i l . The present study represents a sma l l  but 

essential step toward that goa l . 

Future Studies 

The present study has provided suggestive evidence for 

certain mode ls to explain the mutagenic events occurr ing in 

the cells . But the evidence is st i l l  far from proving the 

va l id ity of these models . Additiona l stud ies could be done in 

the future to try to address the rema in ing quest ions . ( 1 )  

S ince the interca lat ive topo isomerase I I  inhibitor m-AMSA has 

d i f ferent and stronger sequence spec i f ic ity , this drug could 

be used to induce aprt- mutants and st imulate the in vi tro DNA 

c leavage to see if mutat ions also assoc iate with strong s ites . 

( 2 )  Some of the mode ls proposed above requ ire DNA rep l ication 

and some of them do not . It wou ld be interesting to obta in 

mutants deve loped from stationary phase cells to see which 

types of  mutants require DNA rep l i cation . For examp l e , the 
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nonhomologous recombination model wou ld not requ ire 

rep l i cation . ( 3 )  The large deletions and insertions could be 

sequenced in the future to determine whether they are 

qua l itatively s imilar to other mutants but s imply involve 

l arger segments of  DNA . ( 4 )  To ver i fy that i f  we are looking 

at double strand break repair events , a def ined DNA substrate 

with a s ingle topoisomerase I I - l inked break at a spec i f i c  s ite 

could be made to determine how these breaks are processed in 

trans fect ion assays or by nuc lear extracts . Th is study could 

eventual ly lead to the elucidat ion of the deta i l s  of double 

strand break repa ir mechanisms inc luding iso lation of  enzymes 

invo lved . 
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